mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
311 lines
12 KiB
C
311 lines
12 KiB
C
#include "region_layer.h"
|
|
#include "activations.h"
|
|
#include "softmax_layer.h"
|
|
#include "blas.h"
|
|
#include "box.h"
|
|
#include "cuda.h"
|
|
#include "utils.h"
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
|
|
{
|
|
region_layer l = {0};
|
|
l.type = REGION;
|
|
|
|
l.n = n;
|
|
l.batch = batch;
|
|
l.h = h;
|
|
l.w = w;
|
|
l.classes = classes;
|
|
l.coords = coords;
|
|
l.cost = calloc(1, sizeof(float));
|
|
l.biases = calloc(n*2, sizeof(float));
|
|
l.bias_updates = calloc(n*2, sizeof(float));
|
|
l.outputs = h*w*n*(classes + coords + 1);
|
|
l.inputs = l.outputs;
|
|
l.truths = 30*(5);
|
|
l.delta = calloc(batch*l.outputs, sizeof(float));
|
|
l.output = calloc(batch*l.outputs, sizeof(float));
|
|
int i;
|
|
for(i = 0; i < n*2; ++i){
|
|
l.biases[i] = .5;
|
|
}
|
|
|
|
l.forward = forward_region_layer;
|
|
l.backward = backward_region_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_region_layer_gpu;
|
|
l.backward_gpu = backward_region_layer_gpu;
|
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
|
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
|
#endif
|
|
|
|
fprintf(stderr, "Region Layer\n");
|
|
srand(0);
|
|
|
|
return l;
|
|
}
|
|
|
|
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
|
|
{
|
|
box b;
|
|
b.x = (i + .5)/w + x[index + 0] * biases[2*n];
|
|
b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
|
|
b.w = exp(x[index + 2]) * biases[2*n];
|
|
b.h = exp(x[index + 3]) * biases[2*n+1];
|
|
return b;
|
|
}
|
|
|
|
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
|
|
{
|
|
box pred = get_region_box(x, biases, n, index, i, j, w, h);
|
|
float iou = box_iou(pred, truth);
|
|
|
|
float tx = (truth.x - (i + .5)/w) / biases[2*n];
|
|
float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
|
|
float tw = log(truth.w / biases[2*n]);
|
|
float th = log(truth.h / biases[2*n + 1]);
|
|
|
|
delta[index + 0] = scale * (tx - x[index + 0]);
|
|
delta[index + 1] = scale * (ty - x[index + 1]);
|
|
delta[index + 2] = scale * (tw - x[index + 2]);
|
|
delta[index + 3] = scale * (th - x[index + 3]);
|
|
return iou;
|
|
}
|
|
|
|
float logit(float x)
|
|
{
|
|
return log(x/(1.-x));
|
|
}
|
|
|
|
float tisnan(float x)
|
|
{
|
|
return (x != x);
|
|
}
|
|
|
|
#define LOG 0
|
|
|
|
void forward_region_layer(const region_layer l, network_state state)
|
|
{
|
|
int i,j,b,t,n;
|
|
int size = l.coords + l.classes + 1;
|
|
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
|
|
reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
|
|
for (b = 0; b < l.batch; ++b){
|
|
for(i = 0; i < l.h*l.w*l.n; ++i){
|
|
int index = size*i + b*l.outputs;
|
|
l.output[index + 4] = logistic_activate(l.output[index + 4]);
|
|
if(l.softmax){
|
|
softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
|
|
}
|
|
}
|
|
}
|
|
if(!state.train) return;
|
|
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
|
|
float avg_iou = 0;
|
|
float recall = 0;
|
|
float avg_cat = 0;
|
|
float avg_obj = 0;
|
|
float avg_anyobj = 0;
|
|
int count = 0;
|
|
*(l.cost) = 0;
|
|
for (b = 0; b < l.batch; ++b) {
|
|
for (j = 0; j < l.h; ++j) {
|
|
for (i = 0; i < l.w; ++i) {
|
|
for (n = 0; n < l.n; ++n) {
|
|
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
|
|
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
|
|
float best_iou = 0;
|
|
for(t = 0; t < 30; ++t){
|
|
box truth = float_to_box(state.truth + t*5 + b*l.truths);
|
|
if(!truth.x) break;
|
|
float iou = box_iou(pred, truth);
|
|
if (iou > best_iou) best_iou = iou;
|
|
}
|
|
avg_anyobj += l.output[index + 4];
|
|
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
|
|
if(best_iou > .5) l.delta[index + 4] = 0;
|
|
|
|
if(*(state.net.seen) < 6400){
|
|
box truth = {0};
|
|
truth.x = (i + .5)/l.w;
|
|
truth.y = (j + .5)/l.h;
|
|
truth.w = .5;
|
|
truth.h = .5;
|
|
delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
|
|
//l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
|
|
//l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
|
|
//l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
|
|
//l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(t = 0; t < 30; ++t){
|
|
box truth = float_to_box(state.truth + t*5 + b*l.truths);
|
|
int class = state.truth[t*5 + b*l.truths + 4];
|
|
if(!truth.x) break;
|
|
float best_iou = 0;
|
|
int best_index = 0;
|
|
int best_n = 0;
|
|
i = (truth.x * l.w);
|
|
j = (truth.y * l.h);
|
|
//printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
|
|
box truth_shift = truth;
|
|
truth_shift.x = 0;
|
|
truth_shift.y = 0;
|
|
printf("index %d %d\n",i, j);
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
|
|
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
|
|
printf("pred: (%f, %f) %f x %f\n", pred.x*l.w - i - .5, pred.y * l.h - j - .5, pred.w, pred.h);
|
|
pred.x = 0;
|
|
pred.y = 0;
|
|
float iou = box_iou(pred, truth_shift);
|
|
if (iou > best_iou){
|
|
best_index = index;
|
|
best_iou = iou;
|
|
best_n = n;
|
|
}
|
|
}
|
|
printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x * l.w - i - .5, truth.y*l.h - j - .5, truth.w, truth.h);
|
|
|
|
float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
|
|
if(iou > .5) recall += 1;
|
|
avg_iou += iou;
|
|
|
|
//l.delta[best_index + 4] = iou - l.output[best_index + 4];
|
|
avg_obj += l.output[best_index + 4];
|
|
l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
|
|
if (l.rescore) {
|
|
l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
|
|
}
|
|
//printf("%f\n", l.delta[best_index+1]);
|
|
/*
|
|
if(isnan(l.delta[best_index+1])){
|
|
printf("%f\n", true_scale);
|
|
printf("%f\n", l.output[best_index + 1]);
|
|
printf("%f\n", truth.w);
|
|
printf("%f\n", truth.h);
|
|
error("bad");
|
|
}
|
|
*/
|
|
for(n = 0; n < l.classes; ++n){
|
|
l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
|
|
if(n == class) avg_cat += l.output[best_index + 5 + n];
|
|
}
|
|
/*
|
|
if(0){
|
|
printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
|
|
printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
|
|
float aspect = exp(true_aspect);
|
|
float scale = logistic_activate(true_scale);
|
|
float move_x = true_dx;
|
|
float move_y = true_dy;
|
|
|
|
box b;
|
|
b.w = sqrt(scale * aspect);
|
|
b.h = b.w * 1./aspect;
|
|
b.x = move_x * b.w + (i + .5)/l.w;
|
|
b.y = move_y * b.h + (j + .5)/l.h;
|
|
printf("%f %f\n", b.x, truth.x);
|
|
printf("%f %f\n", b.y, truth.y);
|
|
printf("%f %f\n", b.w, truth.w);
|
|
printf("%f %f\n", b.h, truth.h);
|
|
//printf("%f\n", box_iou(b, truth));
|
|
}
|
|
*/
|
|
++count;
|
|
}
|
|
}
|
|
printf("\n");
|
|
reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
|
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
|
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
|
|
}
|
|
|
|
void backward_region_layer(const region_layer l, network_state state)
|
|
{
|
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
|
|
}
|
|
|
|
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
|
{
|
|
int i,j,n;
|
|
float *predictions = l.output;
|
|
//int per_cell = 5*num+classes;
|
|
for (i = 0; i < l.w*l.h; ++i){
|
|
int row = i / l.w;
|
|
int col = i % l.w;
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = i*l.n + n;
|
|
int p_index = index * (l.classes + 5) + 4;
|
|
float scale = predictions[p_index];
|
|
int box_index = index * (l.classes + 5);
|
|
boxes[index].x = (predictions[box_index + 0] + col + .5) / l.w * w;
|
|
boxes[index].y = (predictions[box_index + 1] + row + .5) / l.h * h;
|
|
if(0){
|
|
boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / l.w * w;
|
|
boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / l.h * h;
|
|
}
|
|
boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (l.sqrt?2:1)) * w;
|
|
boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (l.sqrt?2:1)) * h;
|
|
if(1){
|
|
boxes[index].x = ((col + .5)/l.w + predictions[box_index + 0] * .5) * w;
|
|
boxes[index].y = ((row + .5)/l.h + predictions[box_index + 1] * .5) * h;
|
|
boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w;
|
|
boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h;
|
|
}
|
|
for(j = 0; j < l.classes; ++j){
|
|
int class_index = index * (l.classes + 5) + 5;
|
|
float prob = scale*predictions[class_index+j];
|
|
probs[index][j] = (prob > thresh) ? prob : 0;
|
|
}
|
|
if(only_objectness){
|
|
probs[index][0] = scale;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
void forward_region_layer_gpu(const region_layer l, network_state state)
|
|
{
|
|
/*
|
|
if(!state.train){
|
|
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
|
|
return;
|
|
}
|
|
*/
|
|
|
|
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
|
float *truth_cpu = 0;
|
|
if(state.truth){
|
|
int num_truth = l.batch*l.truths;
|
|
truth_cpu = calloc(num_truth, sizeof(float));
|
|
cuda_pull_array(state.truth, truth_cpu, num_truth);
|
|
}
|
|
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
|
network_state cpu_state = state;
|
|
cpu_state.train = state.train;
|
|
cpu_state.truth = truth_cpu;
|
|
cpu_state.input = in_cpu;
|
|
forward_region_layer(l, cpu_state);
|
|
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
|
|
free(cpu_state.input);
|
|
if(cpu_state.truth) free(cpu_state.truth);
|
|
}
|
|
|
|
void backward_region_layer_gpu(region_layer l, network_state state)
|
|
{
|
|
axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
|
|
//copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
|
}
|
|
#endif
|
|
|