darknet/examples/super.c
2018-03-15 15:40:09 -07:00

121 lines
3.5 KiB
C

#include "darknet.h"
void train_super(char *cfgfile, char *weightfile, int clear)
{
char *train_images = "/data/imagenet/imagenet1k.train.list";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network *net = load_network(cfgfile, weightfile, clear);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
int i = *net->seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.scale = 4;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.type = SUPER_DATA;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
void test_super(char *cfgfile, char *weightfile, char *filename)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
resize_network(net, im.w, im.h);
printf("%d %d\n", im.w, im.h);
float *X = im.data;
time=clock();
network_predict(net, X);
image out = get_network_image(net);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
save_image(out, "out");
show_image(out, "out");
free_image(im);
if (filename) break;
}
}
void run_super(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
int clear = find_arg(argc, argv, "-clear");
if(0==strcmp(argv[2], "train")) train_super(cfg, weights, clear);
else if(0==strcmp(argv[2], "test")) test_super(cfg, weights, filename);
/*
else if(0==strcmp(argv[2], "valid")) validate_super(cfg, weights);
*/
}