mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
609 lines
18 KiB
C
609 lines
18 KiB
C
#include "convolutional_layer.h"
|
|
#include "utils.h"
|
|
#include "batchnorm_layer.h"
|
|
#include "im2col.h"
|
|
#include "col2im.h"
|
|
#include "blas.h"
|
|
#include "gemm.h"
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
#ifdef AI2
|
|
#include "xnor_layer.h"
|
|
#endif
|
|
|
|
void swap_binary(convolutional_layer *l)
|
|
{
|
|
float *swap = l->weights;
|
|
l->weights = l->binary_weights;
|
|
l->binary_weights = swap;
|
|
|
|
#ifdef GPU
|
|
swap = l->weights_gpu;
|
|
l->weights_gpu = l->binary_weights_gpu;
|
|
l->binary_weights_gpu = swap;
|
|
#endif
|
|
}
|
|
|
|
void binarize_weights(float *weights, int n, int size, float *binary)
|
|
{
|
|
int i, f;
|
|
for(f = 0; f < n; ++f){
|
|
float mean = 0;
|
|
for(i = 0; i < size; ++i){
|
|
mean += fabs(weights[f*size + i]);
|
|
}
|
|
mean = mean / size;
|
|
for(i = 0; i < size; ++i){
|
|
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
|
|
}
|
|
}
|
|
}
|
|
|
|
void binarize_cpu(float *input, int n, float *binary)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
binary[i] = (input[i] > 0) ? 1 : -1;
|
|
}
|
|
}
|
|
|
|
void binarize_input(float *input, int n, int size, float *binary)
|
|
{
|
|
int i, s;
|
|
for(s = 0; s < size; ++s){
|
|
float mean = 0;
|
|
for(i = 0; i < n; ++i){
|
|
mean += fabs(input[i*size + s]);
|
|
}
|
|
mean = mean / n;
|
|
for(i = 0; i < n; ++i){
|
|
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
|
|
}
|
|
}
|
|
}
|
|
|
|
int convolutional_out_height(convolutional_layer l)
|
|
{
|
|
return (l.h + 2*l.pad - l.size) / l.stride + 1;
|
|
}
|
|
|
|
int convolutional_out_width(convolutional_layer l)
|
|
{
|
|
return (l.w + 2*l.pad - l.size) / l.stride + 1;
|
|
}
|
|
|
|
image get_convolutional_image(convolutional_layer l)
|
|
{
|
|
return float_to_image(l.out_w,l.out_h,l.out_c,l.output);
|
|
}
|
|
|
|
image get_convolutional_delta(convolutional_layer l)
|
|
{
|
|
return float_to_image(l.out_w,l.out_h,l.out_c,l.delta);
|
|
}
|
|
|
|
static size_t get_workspace_size(layer l){
|
|
#ifdef CUDNN
|
|
if(gpu_index >= 0){
|
|
size_t most = 0;
|
|
size_t s = 0;
|
|
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
|
|
l.srcTensorDesc,
|
|
l.weightDesc,
|
|
l.convDesc,
|
|
l.dstTensorDesc,
|
|
l.fw_algo,
|
|
&s);
|
|
if (s > most) most = s;
|
|
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
|
|
l.srcTensorDesc,
|
|
l.ddstTensorDesc,
|
|
l.convDesc,
|
|
l.dweightDesc,
|
|
l.bf_algo,
|
|
&s);
|
|
if (s > most) most = s;
|
|
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
|
|
l.weightDesc,
|
|
l.ddstTensorDesc,
|
|
l.convDesc,
|
|
l.dsrcTensorDesc,
|
|
l.bd_algo,
|
|
&s);
|
|
if (s > most) most = s;
|
|
return most;
|
|
}
|
|
#endif
|
|
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c/l.groups*sizeof(float);
|
|
}
|
|
|
|
#ifdef GPU
|
|
#ifdef CUDNN
|
|
void cudnn_convolutional_setup(layer *l)
|
|
{
|
|
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
|
|
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
|
|
|
|
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
|
|
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
|
|
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
|
|
|
|
cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size);
|
|
cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size);
|
|
#if CUDNN_MAJOR >= 6
|
|
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);
|
|
#else
|
|
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
|
|
#endif
|
|
|
|
#if CUDNN_MAJOR >= 7
|
|
cudnnSetConvolutionGroupCount(l->convDesc, l->groups);
|
|
#else
|
|
if(l->groups > 1){
|
|
error("CUDNN < 7 doesn't support groups, please upgrade!");
|
|
}
|
|
#endif
|
|
|
|
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
|
|
l->srcTensorDesc,
|
|
l->weightDesc,
|
|
l->convDesc,
|
|
l->dstTensorDesc,
|
|
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
|
|
4000000000,
|
|
&l->fw_algo);
|
|
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
|
|
l->weightDesc,
|
|
l->ddstTensorDesc,
|
|
l->convDesc,
|
|
l->dsrcTensorDesc,
|
|
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
|
|
4000000000,
|
|
&l->bd_algo);
|
|
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
|
|
l->srcTensorDesc,
|
|
l->ddstTensorDesc,
|
|
l->convDesc,
|
|
l->dweightDesc,
|
|
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
|
|
4000000000,
|
|
&l->bf_algo);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
|
|
{
|
|
int i;
|
|
convolutional_layer l = {0};
|
|
l.type = CONVOLUTIONAL;
|
|
|
|
l.groups = groups;
|
|
l.h = h;
|
|
l.w = w;
|
|
l.c = c;
|
|
l.n = n;
|
|
l.binary = binary;
|
|
l.xnor = xnor;
|
|
l.batch = batch;
|
|
l.stride = stride;
|
|
l.size = size;
|
|
l.pad = padding;
|
|
l.batch_normalize = batch_normalize;
|
|
|
|
l.weights = calloc(c/groups*n*size*size, sizeof(float));
|
|
l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));
|
|
|
|
l.biases = calloc(n, sizeof(float));
|
|
l.bias_updates = calloc(n, sizeof(float));
|
|
|
|
l.nweights = c/groups*n*size*size;
|
|
l.nbiases = n;
|
|
|
|
// float scale = 1./sqrt(size*size*c);
|
|
float scale = sqrt(2./(size*size*c/l.groups));
|
|
//printf("convscale %f\n", scale);
|
|
//scale = .02;
|
|
//for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
|
|
for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
|
|
int out_w = convolutional_out_width(l);
|
|
int out_h = convolutional_out_height(l);
|
|
l.out_h = out_h;
|
|
l.out_w = out_w;
|
|
l.out_c = n;
|
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
|
l.inputs = l.w * l.h * l.c;
|
|
|
|
l.output = calloc(l.batch*l.outputs, sizeof(float));
|
|
l.delta = calloc(l.batch*l.outputs, sizeof(float));
|
|
|
|
l.forward = forward_convolutional_layer;
|
|
l.backward = backward_convolutional_layer;
|
|
l.update = update_convolutional_layer;
|
|
if(binary){
|
|
l.binary_weights = calloc(l.nweights, sizeof(float));
|
|
l.cweights = calloc(l.nweights, sizeof(char));
|
|
l.scales = calloc(n, sizeof(float));
|
|
}
|
|
if(xnor){
|
|
l.binary_weights = calloc(l.nweights, sizeof(float));
|
|
l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
|
|
}
|
|
|
|
if(batch_normalize){
|
|
l.scales = calloc(n, sizeof(float));
|
|
l.scale_updates = calloc(n, sizeof(float));
|
|
for(i = 0; i < n; ++i){
|
|
l.scales[i] = 1;
|
|
}
|
|
|
|
l.mean = calloc(n, sizeof(float));
|
|
l.variance = calloc(n, sizeof(float));
|
|
|
|
l.mean_delta = calloc(n, sizeof(float));
|
|
l.variance_delta = calloc(n, sizeof(float));
|
|
|
|
l.rolling_mean = calloc(n, sizeof(float));
|
|
l.rolling_variance = calloc(n, sizeof(float));
|
|
l.x = calloc(l.batch*l.outputs, sizeof(float));
|
|
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
|
|
}
|
|
if(adam){
|
|
l.m = calloc(l.nweights, sizeof(float));
|
|
l.v = calloc(l.nweights, sizeof(float));
|
|
l.bias_m = calloc(n, sizeof(float));
|
|
l.scale_m = calloc(n, sizeof(float));
|
|
l.bias_v = calloc(n, sizeof(float));
|
|
l.scale_v = calloc(n, sizeof(float));
|
|
}
|
|
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_convolutional_layer_gpu;
|
|
l.backward_gpu = backward_convolutional_layer_gpu;
|
|
l.update_gpu = update_convolutional_layer_gpu;
|
|
|
|
if(gpu_index >= 0){
|
|
if (adam) {
|
|
l.m_gpu = cuda_make_array(l.m, l.nweights);
|
|
l.v_gpu = cuda_make_array(l.v, l.nweights);
|
|
l.bias_m_gpu = cuda_make_array(l.bias_m, n);
|
|
l.bias_v_gpu = cuda_make_array(l.bias_v, n);
|
|
l.scale_m_gpu = cuda_make_array(l.scale_m, n);
|
|
l.scale_v_gpu = cuda_make_array(l.scale_v, n);
|
|
}
|
|
|
|
l.weights_gpu = cuda_make_array(l.weights, l.nweights);
|
|
l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
|
|
|
|
l.biases_gpu = cuda_make_array(l.biases, n);
|
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
|
|
|
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
|
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
|
|
|
if(binary){
|
|
l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
|
|
}
|
|
if(xnor){
|
|
l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
|
|
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
|
|
}
|
|
|
|
if(batch_normalize){
|
|
l.mean_gpu = cuda_make_array(l.mean, n);
|
|
l.variance_gpu = cuda_make_array(l.variance, n);
|
|
|
|
l.rolling_mean_gpu = cuda_make_array(l.mean, n);
|
|
l.rolling_variance_gpu = cuda_make_array(l.variance, n);
|
|
|
|
l.mean_delta_gpu = cuda_make_array(l.mean, n);
|
|
l.variance_delta_gpu = cuda_make_array(l.variance, n);
|
|
|
|
l.scales_gpu = cuda_make_array(l.scales, n);
|
|
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
|
|
|
|
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
|
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
|
}
|
|
#ifdef CUDNN
|
|
cudnnCreateTensorDescriptor(&l.normTensorDesc);
|
|
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
|
|
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
|
|
cudnnCreateFilterDescriptor(&l.weightDesc);
|
|
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
|
|
cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
|
|
cudnnCreateFilterDescriptor(&l.dweightDesc);
|
|
cudnnCreateConvolutionDescriptor(&l.convDesc);
|
|
cudnn_convolutional_setup(&l);
|
|
#endif
|
|
}
|
|
#endif
|
|
l.workspace_size = get_workspace_size(l);
|
|
l.activation = activation;
|
|
|
|
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);
|
|
|
|
return l;
|
|
}
|
|
|
|
void denormalize_convolutional_layer(convolutional_layer l)
|
|
{
|
|
int i, j;
|
|
for(i = 0; i < l.n; ++i){
|
|
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
|
|
for(j = 0; j < l.c/l.groups*l.size*l.size; ++j){
|
|
l.weights[i*l.c/l.groups*l.size*l.size + j] *= scale;
|
|
}
|
|
l.biases[i] -= l.rolling_mean[i] * scale;
|
|
l.scales[i] = 1;
|
|
l.rolling_mean[i] = 0;
|
|
l.rolling_variance[i] = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
void test_convolutional_layer()
|
|
{
|
|
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
|
|
l.batch_normalize = 1;
|
|
float data[] = {1,1,1,1,1,
|
|
1,1,1,1,1,
|
|
1,1,1,1,1,
|
|
1,1,1,1,1,
|
|
1,1,1,1,1,
|
|
2,2,2,2,2,
|
|
2,2,2,2,2,
|
|
2,2,2,2,2,
|
|
2,2,2,2,2,
|
|
2,2,2,2,2,
|
|
3,3,3,3,3,
|
|
3,3,3,3,3,
|
|
3,3,3,3,3,
|
|
3,3,3,3,3,
|
|
3,3,3,3,3};
|
|
//net.input = data;
|
|
//forward_convolutional_layer(l);
|
|
}
|
|
*/
|
|
|
|
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
|
{
|
|
l->w = w;
|
|
l->h = h;
|
|
int out_w = convolutional_out_width(*l);
|
|
int out_h = convolutional_out_height(*l);
|
|
|
|
l->out_w = out_w;
|
|
l->out_h = out_h;
|
|
|
|
l->outputs = l->out_h * l->out_w * l->out_c;
|
|
l->inputs = l->w * l->h * l->c;
|
|
|
|
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
|
|
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
|
|
if(l->batch_normalize){
|
|
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
|
|
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
|
|
}
|
|
|
|
#ifdef GPU
|
|
cuda_free(l->delta_gpu);
|
|
cuda_free(l->output_gpu);
|
|
|
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
|
|
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
|
|
|
|
if(l->batch_normalize){
|
|
cuda_free(l->x_gpu);
|
|
cuda_free(l->x_norm_gpu);
|
|
|
|
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
|
|
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
|
|
}
|
|
#ifdef CUDNN
|
|
cudnn_convolutional_setup(l);
|
|
#endif
|
|
#endif
|
|
l->workspace_size = get_workspace_size(*l);
|
|
}
|
|
|
|
void add_bias(float *output, float *biases, int batch, int n, int size)
|
|
{
|
|
int i,j,b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(i = 0; i < n; ++i){
|
|
for(j = 0; j < size; ++j){
|
|
output[(b*n + i)*size + j] += biases[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void scale_bias(float *output, float *scales, int batch, int n, int size)
|
|
{
|
|
int i,j,b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(i = 0; i < n; ++i){
|
|
for(j = 0; j < size; ++j){
|
|
output[(b*n + i)*size + j] *= scales[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
|
|
{
|
|
int i,b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(i = 0; i < n; ++i){
|
|
bias_updates[i] += sum_array(delta+size*(i+b*n), size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void forward_convolutional_layer(convolutional_layer l, network net)
|
|
{
|
|
int i, j;
|
|
|
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
|
|
|
if(l.xnor){
|
|
binarize_weights(l.weights, l.n, l.c/l.groups*l.size*l.size, l.binary_weights);
|
|
swap_binary(&l);
|
|
binarize_cpu(net.input, l.c*l.h*l.w*l.batch, l.binary_input);
|
|
net.input = l.binary_input;
|
|
}
|
|
|
|
int m = l.n/l.groups;
|
|
int k = l.size*l.size*l.c/l.groups;
|
|
int n = l.out_w*l.out_h;
|
|
for(i = 0; i < l.batch; ++i){
|
|
for(j = 0; j < l.groups; ++j){
|
|
float *a = l.weights + j*l.nweights/l.groups;
|
|
float *b = net.workspace;
|
|
float *c = l.output + (i*l.groups + j)*n*m;
|
|
|
|
im2col_cpu(net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w,
|
|
l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
|
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
|
}
|
|
}
|
|
|
|
if(l.batch_normalize){
|
|
forward_batchnorm_layer(l, net);
|
|
} else {
|
|
add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w);
|
|
}
|
|
|
|
activate_array(l.output, l.outputs*l.batch, l.activation);
|
|
if(l.binary || l.xnor) swap_binary(&l);
|
|
}
|
|
|
|
void backward_convolutional_layer(convolutional_layer l, network net)
|
|
{
|
|
int i, j;
|
|
int m = l.n/l.groups;
|
|
int n = l.size*l.size*l.c/l.groups;
|
|
int k = l.out_w*l.out_h;
|
|
|
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
|
|
|
if(l.batch_normalize){
|
|
backward_batchnorm_layer(l, net);
|
|
} else {
|
|
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
|
|
}
|
|
|
|
for(i = 0; i < l.batch; ++i){
|
|
for(j = 0; j < l.groups; ++j){
|
|
float *a = l.delta + (i*l.groups + j)*m*k;
|
|
float *b = net.workspace;
|
|
float *c = l.weight_updates + j*l.nweights/l.groups;
|
|
|
|
float *im = net.input+(i*l.groups + j)*l.c/l.groups*l.h*l.w;
|
|
|
|
im2col_cpu(im, l.c/l.groups, l.h, l.w,
|
|
l.size, l.stride, l.pad, b);
|
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
|
|
|
if(net.delta){
|
|
a = l.weights + j*l.nweights/l.groups;
|
|
b = l.delta + (i*l.groups + j)*m*k;
|
|
c = net.workspace;
|
|
|
|
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
|
|
|
col2im_cpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride,
|
|
l.pad, net.delta + (i*l.groups + j)*l.c/l.groups*l.h*l.w);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void update_convolutional_layer(convolutional_layer l, update_args a)
|
|
{
|
|
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
|
float momentum = a.momentum;
|
|
float decay = a.decay;
|
|
int batch = a.batch;
|
|
|
|
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
|
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
|
|
|
if(l.scales){
|
|
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
|
|
scal_cpu(l.n, momentum, l.scale_updates, 1);
|
|
}
|
|
|
|
axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
|
|
axpy_cpu(l.nweights, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
|
|
scal_cpu(l.nweights, momentum, l.weight_updates, 1);
|
|
}
|
|
|
|
|
|
image get_convolutional_weight(convolutional_layer l, int i)
|
|
{
|
|
int h = l.size;
|
|
int w = l.size;
|
|
int c = l.c/l.groups;
|
|
return float_to_image(w,h,c,l.weights+i*h*w*c);
|
|
}
|
|
|
|
void rgbgr_weights(convolutional_layer l)
|
|
{
|
|
int i;
|
|
for(i = 0; i < l.n; ++i){
|
|
image im = get_convolutional_weight(l, i);
|
|
if (im.c == 3) {
|
|
rgbgr_image(im);
|
|
}
|
|
}
|
|
}
|
|
|
|
void rescale_weights(convolutional_layer l, float scale, float trans)
|
|
{
|
|
int i;
|
|
for(i = 0; i < l.n; ++i){
|
|
image im = get_convolutional_weight(l, i);
|
|
if (im.c == 3) {
|
|
scale_image(im, scale);
|
|
float sum = sum_array(im.data, im.w*im.h*im.c);
|
|
l.biases[i] += sum*trans;
|
|
}
|
|
}
|
|
}
|
|
|
|
image *get_weights(convolutional_layer l)
|
|
{
|
|
image *weights = calloc(l.n, sizeof(image));
|
|
int i;
|
|
for(i = 0; i < l.n; ++i){
|
|
weights[i] = copy_image(get_convolutional_weight(l, i));
|
|
normalize_image(weights[i]);
|
|
/*
|
|
char buff[256];
|
|
sprintf(buff, "filter%d", i);
|
|
save_image(weights[i], buff);
|
|
*/
|
|
}
|
|
//error("hey");
|
|
return weights;
|
|
}
|
|
|
|
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
|
|
{
|
|
image *single_weights = get_weights(l);
|
|
show_images(single_weights, l.n, window);
|
|
|
|
image delta = get_convolutional_image(l);
|
|
image dc = collapse_image_layers(delta, 1);
|
|
char buff[256];
|
|
sprintf(buff, "%s: Output", window);
|
|
//show_image(dc, buff);
|
|
//save_image(dc, buff);
|
|
free_image(dc);
|
|
return single_weights;
|
|
}
|
|
|