mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
276 lines
10 KiB
C
276 lines
10 KiB
C
#include "detection_layer.h"
|
|
#include "activations.h"
|
|
#include "softmax_layer.h"
|
|
#include "blas.h"
|
|
#include "box.h"
|
|
#include "cuda.h"
|
|
#include "utils.h"
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
|
|
{
|
|
detection_layer l = {0};
|
|
l.type = DETECTION;
|
|
|
|
l.n = n;
|
|
l.batch = batch;
|
|
l.inputs = inputs;
|
|
l.classes = classes;
|
|
l.coords = coords;
|
|
l.rescore = rescore;
|
|
l.side = side;
|
|
l.w = side;
|
|
l.h = side;
|
|
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
|
|
l.cost = calloc(1, sizeof(float));
|
|
l.outputs = l.inputs;
|
|
l.truths = l.side*l.side*(1+l.coords+l.classes);
|
|
l.output = calloc(batch*l.outputs, sizeof(float));
|
|
l.delta = calloc(batch*l.outputs, sizeof(float));
|
|
|
|
l.forward = forward_detection_layer;
|
|
l.backward = backward_detection_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_detection_layer_gpu;
|
|
l.backward_gpu = backward_detection_layer_gpu;
|
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
|
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
|
#endif
|
|
|
|
fprintf(stderr, "Detection Layer\n");
|
|
srand(0);
|
|
|
|
return l;
|
|
}
|
|
|
|
void forward_detection_layer(const detection_layer l, network net)
|
|
{
|
|
int locations = l.side*l.side;
|
|
int i,j;
|
|
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float));
|
|
//if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
|
|
int b;
|
|
if (l.softmax){
|
|
for(b = 0; b < l.batch; ++b){
|
|
int index = b*l.inputs;
|
|
for (i = 0; i < locations; ++i) {
|
|
int offset = i*l.classes;
|
|
softmax(l.output + index + offset, l.classes, 1, 1,
|
|
l.output + index + offset);
|
|
}
|
|
}
|
|
}
|
|
if(net.train){
|
|
float avg_iou = 0;
|
|
float avg_cat = 0;
|
|
float avg_allcat = 0;
|
|
float avg_obj = 0;
|
|
float avg_anyobj = 0;
|
|
int count = 0;
|
|
*(l.cost) = 0;
|
|
int size = l.inputs * l.batch;
|
|
memset(l.delta, 0, size * sizeof(float));
|
|
for (b = 0; b < l.batch; ++b){
|
|
int index = b*l.inputs;
|
|
for (i = 0; i < locations; ++i) {
|
|
int truth_index = (b*locations + i)*(1+l.coords+l.classes);
|
|
int is_obj = net.truth[truth_index];
|
|
for (j = 0; j < l.n; ++j) {
|
|
int p_index = index + locations*l.classes + i*l.n + j;
|
|
l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
|
|
*(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
|
|
avg_anyobj += l.output[p_index];
|
|
}
|
|
|
|
int best_index = -1;
|
|
float best_iou = 0;
|
|
float best_rmse = 20;
|
|
|
|
if (!is_obj){
|
|
continue;
|
|
}
|
|
|
|
int class_index = index + i*l.classes;
|
|
for(j = 0; j < l.classes; ++j) {
|
|
l.delta[class_index+j] = l.class_scale * (net.truth[truth_index+1+j] - l.output[class_index+j]);
|
|
*(l.cost) += l.class_scale * pow(net.truth[truth_index+1+j] - l.output[class_index+j], 2);
|
|
if(net.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
|
|
avg_allcat += l.output[class_index+j];
|
|
}
|
|
|
|
box truth = float_to_box(net.truth + truth_index + 1 + l.classes, 1);
|
|
truth.x /= l.side;
|
|
truth.y /= l.side;
|
|
|
|
for(j = 0; j < l.n; ++j){
|
|
int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
|
|
box out = float_to_box(l.output + box_index, 1);
|
|
out.x /= l.side;
|
|
out.y /= l.side;
|
|
|
|
if (l.sqrt){
|
|
out.w = out.w*out.w;
|
|
out.h = out.h*out.h;
|
|
}
|
|
|
|
float iou = box_iou(out, truth);
|
|
//iou = 0;
|
|
float rmse = box_rmse(out, truth);
|
|
if(best_iou > 0 || iou > 0){
|
|
if(iou > best_iou){
|
|
best_iou = iou;
|
|
best_index = j;
|
|
}
|
|
}else{
|
|
if(rmse < best_rmse){
|
|
best_rmse = rmse;
|
|
best_index = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(l.forced){
|
|
if(truth.w*truth.h < .1){
|
|
best_index = 1;
|
|
}else{
|
|
best_index = 0;
|
|
}
|
|
}
|
|
if(l.random && *(net.seen) < 64000){
|
|
best_index = rand()%l.n;
|
|
}
|
|
|
|
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
|
|
int tbox_index = truth_index + 1 + l.classes;
|
|
|
|
box out = float_to_box(l.output + box_index, 1);
|
|
out.x /= l.side;
|
|
out.y /= l.side;
|
|
if (l.sqrt) {
|
|
out.w = out.w*out.w;
|
|
out.h = out.h*out.h;
|
|
}
|
|
float iou = box_iou(out, truth);
|
|
|
|
//printf("%d,", best_index);
|
|
int p_index = index + locations*l.classes + i*l.n + best_index;
|
|
*(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
|
|
*(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
|
|
avg_obj += l.output[p_index];
|
|
l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
|
|
|
|
if(l.rescore){
|
|
l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
|
|
}
|
|
|
|
l.delta[box_index+0] = l.coord_scale*(net.truth[tbox_index + 0] - l.output[box_index + 0]);
|
|
l.delta[box_index+1] = l.coord_scale*(net.truth[tbox_index + 1] - l.output[box_index + 1]);
|
|
l.delta[box_index+2] = l.coord_scale*(net.truth[tbox_index + 2] - l.output[box_index + 2]);
|
|
l.delta[box_index+3] = l.coord_scale*(net.truth[tbox_index + 3] - l.output[box_index + 3]);
|
|
if(l.sqrt){
|
|
l.delta[box_index+2] = l.coord_scale*(sqrt(net.truth[tbox_index + 2]) - l.output[box_index + 2]);
|
|
l.delta[box_index+3] = l.coord_scale*(sqrt(net.truth[tbox_index + 3]) - l.output[box_index + 3]);
|
|
}
|
|
|
|
*(l.cost) += pow(1-iou, 2);
|
|
avg_iou += iou;
|
|
++count;
|
|
}
|
|
}
|
|
|
|
if(0){
|
|
float *costs = calloc(l.batch*locations*l.n, sizeof(float));
|
|
for (b = 0; b < l.batch; ++b) {
|
|
int index = b*l.inputs;
|
|
for (i = 0; i < locations; ++i) {
|
|
for (j = 0; j < l.n; ++j) {
|
|
int p_index = index + locations*l.classes + i*l.n + j;
|
|
costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
|
|
}
|
|
}
|
|
}
|
|
int indexes[100];
|
|
top_k(costs, l.batch*locations*l.n, 100, indexes);
|
|
float cutoff = costs[indexes[99]];
|
|
for (b = 0; b < l.batch; ++b) {
|
|
int index = b*l.inputs;
|
|
for (i = 0; i < locations; ++i) {
|
|
for (j = 0; j < l.n; ++j) {
|
|
int p_index = index + locations*l.classes + i*l.n + j;
|
|
if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
|
|
}
|
|
}
|
|
}
|
|
free(costs);
|
|
}
|
|
|
|
|
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
|
|
|
|
|
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
|
//if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
|
|
}
|
|
}
|
|
|
|
void backward_detection_layer(const detection_layer l, network net)
|
|
{
|
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
|
|
}
|
|
|
|
void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
|
|
{
|
|
int i,j,n;
|
|
float *predictions = l.output;
|
|
//int per_cell = 5*num+classes;
|
|
for (i = 0; i < l.side*l.side; ++i){
|
|
int row = i / l.side;
|
|
int col = i % l.side;
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = i*l.n + n;
|
|
int p_index = l.side*l.side*l.classes + i*l.n + n;
|
|
float scale = predictions[p_index];
|
|
int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
|
|
box b;
|
|
b.x = (predictions[box_index + 0] + col) / l.side * w;
|
|
b.y = (predictions[box_index + 1] + row) / l.side * h;
|
|
b.w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
|
|
b.h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
|
|
dets[index].bbox = b;
|
|
dets[index].objectness = scale;
|
|
for(j = 0; j < l.classes; ++j){
|
|
int class_index = i*l.classes;
|
|
float prob = scale*predictions[class_index+j];
|
|
dets[index].prob[j] = (prob > thresh) ? prob : 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
void forward_detection_layer_gpu(const detection_layer l, network net)
|
|
{
|
|
if(!net.train){
|
|
copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
|
|
return;
|
|
}
|
|
|
|
cuda_pull_array(net.input_gpu, net.input, l.batch*l.inputs);
|
|
forward_detection_layer(l, net);
|
|
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
|
}
|
|
|
|
void backward_detection_layer_gpu(detection_layer l, network net)
|
|
{
|
|
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
|
|
//copy_gpu(l.batch*l.inputs, l.delta_gpu, 1, net.delta_gpu, 1);
|
|
}
|
|
#endif
|
|
|