mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
236 lines
7.4 KiB
Plaintext
236 lines
7.4 KiB
Plaintext
#include "darknet.h"
|
|
#include "cuda_runtime.h"
|
|
#include "curand.h"
|
|
#include "cublas_v2.h"
|
|
|
|
extern "C" {
|
|
#include "activations.h"
|
|
#include "cuda.h"
|
|
}
|
|
|
|
|
|
__device__ float lhtan_activate_kernel(float x)
|
|
{
|
|
if(x < 0) return .001*x;
|
|
if(x > 1) return .001*(x-1) + 1;
|
|
return x;
|
|
}
|
|
__device__ float lhtan_gradient_kernel(float x)
|
|
{
|
|
if(x > 0 && x < 1) return 1;
|
|
return .001;
|
|
}
|
|
|
|
__device__ float hardtan_activate_kernel(float x)
|
|
{
|
|
if (x < -1) return -1;
|
|
if (x > 1) return 1;
|
|
return x;
|
|
}
|
|
__device__ float linear_activate_kernel(float x){return x;}
|
|
__device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));}
|
|
__device__ float loggy_activate_kernel(float x){return 2./(1. + exp(-x)) - 1;}
|
|
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
|
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);}
|
|
__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
|
|
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01*x;}
|
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
|
|
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;}
|
|
__device__ float tanh_activate_kernel(float x){return (2/(1 + exp(-2*x)) - 1);}
|
|
__device__ float plse_activate_kernel(float x)
|
|
{
|
|
if(x < -4) return .01 * (x + 4);
|
|
if(x > 4) return .01 * (x - 4) + 1;
|
|
return .125*x + .5;
|
|
}
|
|
__device__ float stair_activate_kernel(float x)
|
|
{
|
|
int n = floor(x);
|
|
if (n%2 == 0) return floor(x/2.);
|
|
else return (x - n) + floor(x/2.);
|
|
}
|
|
|
|
|
|
__device__ float hardtan_gradient_kernel(float x)
|
|
{
|
|
if (x > -1 && x < 1) return 1;
|
|
return 0;
|
|
}
|
|
__device__ float linear_gradient_kernel(float x){return 1;}
|
|
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
|
|
__device__ float loggy_gradient_kernel(float x)
|
|
{
|
|
float y = (x+1.)/2.;
|
|
return 2*(1-y)*y;
|
|
}
|
|
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
|
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
|
|
__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507 + (x < 0)*(x + 1.0507*1.6732); }
|
|
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01;}
|
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
|
|
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1;}
|
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
|
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;}
|
|
__device__ float stair_gradient_kernel(float x)
|
|
{
|
|
if (floor(x) == x) return 0;
|
|
return 1;
|
|
}
|
|
|
|
__device__ float activate_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch(a){
|
|
case LINEAR:
|
|
return linear_activate_kernel(x);
|
|
case LOGISTIC:
|
|
return logistic_activate_kernel(x);
|
|
case LOGGY:
|
|
return loggy_activate_kernel(x);
|
|
case RELU:
|
|
return relu_activate_kernel(x);
|
|
case ELU:
|
|
return elu_activate_kernel(x);
|
|
case SELU:
|
|
return selu_activate_kernel(x);
|
|
case RELIE:
|
|
return relie_activate_kernel(x);
|
|
case RAMP:
|
|
return ramp_activate_kernel(x);
|
|
case LEAKY:
|
|
return leaky_activate_kernel(x);
|
|
case TANH:
|
|
return tanh_activate_kernel(x);
|
|
case PLSE:
|
|
return plse_activate_kernel(x);
|
|
case STAIR:
|
|
return stair_activate_kernel(x);
|
|
case HARDTAN:
|
|
return hardtan_activate_kernel(x);
|
|
case LHTAN:
|
|
return lhtan_activate_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__device__ float gradient_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch (a) {
|
|
case LINEAR:
|
|
return linear_gradient_kernel(x);
|
|
case LOGISTIC:
|
|
return logistic_gradient_kernel(x);
|
|
case LOGGY:
|
|
return loggy_gradient_kernel(x);
|
|
case RELU:
|
|
return relu_gradient_kernel(x);
|
|
case ELU:
|
|
return elu_gradient_kernel(x);
|
|
case SELU:
|
|
return selu_gradient_kernel(x);
|
|
case RELIE:
|
|
return relie_gradient_kernel(x);
|
|
case RAMP:
|
|
return ramp_gradient_kernel(x);
|
|
case LEAKY:
|
|
return leaky_gradient_kernel(x);
|
|
case TANH:
|
|
return tanh_gradient_kernel(x);
|
|
case PLSE:
|
|
return plse_gradient_kernel(x);
|
|
case STAIR:
|
|
return stair_gradient_kernel(x);
|
|
case HARDTAN:
|
|
return hardtan_gradient_kernel(x);
|
|
case LHTAN:
|
|
return lhtan_gradient_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
|
|
{
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int i = id % s;
|
|
int b = id / s;
|
|
float x1 = x[b*s + i];
|
|
float x2 = x[b*s + s / 2 + i];
|
|
if (id < n) {
|
|
float de = dy[id];
|
|
dx[b*s + i] = x2*de;
|
|
dx[b*s + s / 2 + i] = x1*de;
|
|
}
|
|
}
|
|
|
|
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK >> >(x, dx, n / 2, size, a, y);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int i = id % s;
|
|
int b = id / s;
|
|
float x1 = x[b*s + i];
|
|
float x2 = x[b*s + s / 2 + i];
|
|
if (id < n) y[id] = x1*x2;
|
|
}
|
|
|
|
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK >> >(x, n / 2, size, a, y);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) x[i] = activate_kernel(x[i], a);
|
|
}
|
|
|
|
__global__ void activate_array_leaky_kernel(float *x, int n)
|
|
{
|
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
|
if (index < n) {
|
|
x[index] = leaky_activate_kernel(x[index]);
|
|
}
|
|
}
|
|
|
|
__global__ void activate_array_selu_kernel(float *x, int n)
|
|
{
|
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
|
if (index < n) {
|
|
x[index] = selu_activate_kernel(x[index]);
|
|
}
|
|
}
|
|
|
|
__global__ void activate_array_logistic_kernel(float *x, int n)
|
|
{
|
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
|
if (index < n) {
|
|
x[index] = logistic_activate_kernel(x[index]);
|
|
}
|
|
}
|
|
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
|
}
|
|
|
|
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
|
{
|
|
if (a == LINEAR) return;
|
|
else if(a == LEAKY) activate_array_leaky_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
|
else if (a == LOGISTIC) activate_array_logistic_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
|
else if (a == SELU) activate_array_selu_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
|
else activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|