darknet/src/network_kernels.cu
2016-08-05 15:27:07 -07:00

296 lines
9.4 KiB
Plaintext

#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "parser.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "rnn_layer.h"
#include "gru_layer.h"
#include "crnn_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "cost_layer.h"
#include "local_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
#include "blas.h"
}
float * get_network_output_gpu_layer(network net, int i);
float * get_network_delta_gpu_layer(network net, int i);
float * get_network_output_gpu(network net);
void forward_network_gpu(network net, network_state state)
{
state.workspace = net.workspace;
int i;
for(i = 0; i < net.n; ++i){
state.index = i;
layer l = net.layers[i];
if(l.delta_gpu){
fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
}
if(l.type == CONVOLUTIONAL){
forward_convolutional_layer_gpu(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer_gpu(l, state);
} else if(l.type == ACTIVE){
forward_activation_layer_gpu(l, state);
} else if(l.type == LOCAL){
forward_local_layer_gpu(l, state);
} else if(l.type == DETECTION){
forward_detection_layer_gpu(l, state);
} else if(l.type == REGION){
forward_region_layer_gpu(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer_gpu(l, state);
} else if(l.type == RNN){
forward_rnn_layer_gpu(l, state);
} else if(l.type == GRU){
forward_gru_layer_gpu(l, state);
} else if(l.type == CRNN){
forward_crnn_layer_gpu(l, state);
} else if(l.type == CROP){
forward_crop_layer_gpu(l, state);
} else if(l.type == COST){
forward_cost_layer_gpu(l, state);
} else if(l.type == SOFTMAX){
forward_softmax_layer_gpu(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer_gpu(l, state);
} else if(l.type == BATCHNORM){
forward_batchnorm_layer_gpu(l, state);
} else if(l.type == MAXPOOL){
forward_maxpool_layer_gpu(l, state);
} else if(l.type == REORG){
forward_reorg_layer_gpu(l, state);
} else if(l.type == AVGPOOL){
forward_avgpool_layer_gpu(l, state);
} else if(l.type == DROPOUT){
forward_dropout_layer_gpu(l, state);
} else if(l.type == ROUTE){
forward_route_layer_gpu(l, net);
} else if(l.type == SHORTCUT){
forward_shortcut_layer_gpu(l, state);
}
state.input = l.output_gpu;
}
}
void backward_network_gpu(network net, network_state state)
{
state.workspace = net.workspace;
int i;
float * original_input = state.input;
float * original_delta = state.delta;
for(i = net.n-1; i >= 0; --i){
state.index = i;
layer l = net.layers[i];
if(i == 0){
state.input = original_input;
state.delta = original_delta;
}else{
layer prev = net.layers[i-1];
state.input = prev.output_gpu;
state.delta = prev.delta_gpu;
}
if(l.type == CONVOLUTIONAL){
backward_convolutional_layer_gpu(l, state);
} else if(l.type == DECONVOLUTIONAL){
backward_deconvolutional_layer_gpu(l, state);
} else if(l.type == ACTIVE){
backward_activation_layer_gpu(l, state);
} else if(l.type == LOCAL){
backward_local_layer_gpu(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer_gpu(l, state);
} else if(l.type == REORG){
backward_reorg_layer_gpu(l, state);
} else if(l.type == AVGPOOL){
if(i != 0) backward_avgpool_layer_gpu(l, state);
} else if(l.type == DROPOUT){
backward_dropout_layer_gpu(l, state);
} else if(l.type == DETECTION){
backward_detection_layer_gpu(l, state);
} else if(l.type == REGION){
backward_region_layer_gpu(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer_gpu(l, state);
} else if(l.type == BATCHNORM){
backward_batchnorm_layer_gpu(l, state);
} else if(l.type == SOFTMAX){
if(i != 0) backward_softmax_layer_gpu(l, state);
} else if(l.type == CONNECTED){
backward_connected_layer_gpu(l, state);
} else if(l.type == RNN){
backward_rnn_layer_gpu(l, state);
} else if(l.type == GRU){
backward_gru_layer_gpu(l, state);
} else if(l.type == CRNN){
backward_crnn_layer_gpu(l, state);
} else if(l.type == COST){
backward_cost_layer_gpu(l, state);
} else if(l.type == ROUTE){
backward_route_layer_gpu(l, net);
} else if(l.type == SHORTCUT){
backward_shortcut_layer_gpu(l, state);
}
}
}
void update_network_gpu(network net)
{
int i;
int update_batch = net.batch*net.subdivisions;
float rate = get_current_rate(net);
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == DECONVOLUTIONAL){
update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == GRU){
update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == RNN){
update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == CRNN){
update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
}
}
}
void forward_backward_network_gpu(network net, float *x, float *y)
{
network_state state;
state.index = 0;
state.net = net;
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
if(!*net.input_gpu){
*net.input_gpu = cuda_make_array(x, x_size);
*net.truth_gpu = cuda_make_array(y, y_size);
}else{
cuda_push_array(*net.input_gpu, x, x_size);
cuda_push_array(*net.truth_gpu, y, y_size);
}
state.input = *net.input_gpu;
state.delta = 0;
state.truth = *net.truth_gpu;
state.train = 1;
forward_network_gpu(net, state);
backward_network_gpu(net, state);
}
float train_network_datum_gpu(network net, float *x, float *y)
{
forward_backward_network_gpu(net, x, y);
float error = get_network_cost(net);
if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
return error;
}
typedef struct {
network net;
float *X;
float *y;
} train_args;
void *train_thread(void *ptr)
{
train_args args = *(train_args*)ptr;
cudaError_t status = cudaSetDevice(args.net.gpu_index);
check_error(status);
forward_backward_network_gpu(args.net, args.X, args.y);
free(ptr);
return 0;
}
pthread_t train_network_in_thread(train_args args)
{
pthread_t thread;
train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
*ptr = args;
if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
return thread;
}
float train_networks(network *nets, int n, data d)
{
int batch = nets[0].batch;
float **X = (float **) calloc(n, sizeof(float *));
float **y = (float **) calloc(n, sizeof(float *));
pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
get_next_batch(d, batch, i*batch, X[i], y[i]);
float err = train_network_datum(nets[i], X[i], y[i]);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float *get_network_output_layer_gpu(network net, int i)
{
layer l = net.layers[i];
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
return l.output;
}
float *get_network_output_gpu(network net)
{
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return get_network_output_layer_gpu(net, i);
}
float *network_predict_gpu(network net, float *input)
{
int size = get_network_input_size(net) * net.batch;
network_state state;
state.index = 0;
state.net = net;
state.input = cuda_make_array(input, size);
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network_gpu(net, state);
float *out = get_network_output_gpu(net);
cuda_free(state.input);
return out;
}