darknet/src/network.c
Joseph Redmon 729ce43e6e stuff
2016-06-09 17:20:31 -07:00

660 lines
18 KiB
C

#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "blas.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
int get_current_batch(network net)
{
int batch_num = (*net.seen)/(net.batch*net.subdivisions);
return batch_num;
}
void reset_momentum(network net)
{
if (net.momentum == 0) return;
net.learning_rate = 0;
net.momentum = 0;
net.decay = 0;
#ifdef GPU
if(gpu_index >= 0) update_network_gpu(net);
#endif
}
float get_current_rate(network net)
{
int batch_num = get_current_batch(net);
int i;
float rate;
switch (net.policy) {
case CONSTANT:
return net.learning_rate;
case STEP:
return net.learning_rate * pow(net.scale, batch_num/net.step);
case STEPS:
rate = net.learning_rate;
for(i = 0; i < net.num_steps; ++i){
if(net.steps[i] > batch_num) return rate;
rate *= net.scales[i];
if(net.steps[i] > batch_num - 1) reset_momentum(net);
}
return rate;
case EXP:
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
case RANDOM:
return net.learning_rate * pow(rand_uniform(0,1), net.power);
case SIG:
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
default:
fprintf(stderr, "Policy is weird!\n");
return net.learning_rate;
}
}
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
case ACTIVE:
return "activation";
case LOCAL:
return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
case RNN:
return "rnn";
case GRU:
return "gru";
case CRNN:
return "crnn";
case MAXPOOL:
return "maxpool";
case AVGPOOL:
return "avgpool";
case SOFTMAX:
return "softmax";
case DETECTION:
return "detection";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
case ROUTE:
return "route";
case SHORTCUT:
return "shortcut";
case NORMALIZATION:
return "normalization";
case BATCHNORM:
return "batchnorm";
default:
break;
}
return "none";
}
network make_network(int n)
{
network net = {0};
net.n = n;
net.layers = calloc(net.n, sizeof(layer));
net.seen = calloc(1, sizeof(int));
#ifdef GPU
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
#endif
return net;
}
void forward_network(network net, network_state state)
{
state.workspace = net.workspace;
int i;
for(i = 0; i < net.n; ++i){
state.index = i;
layer l = net.layers[i];
if(l.delta){
scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
}
if(l.type == CONVOLUTIONAL){
forward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer(l, state);
} else if(l.type == ACTIVE){
forward_activation_layer(l, state);
} else if(l.type == LOCAL){
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
} else if(l.type == BATCHNORM){
forward_batchnorm_layer(l, state);
} else if(l.type == DETECTION){
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
} else if(l.type == RNN){
forward_rnn_layer(l, state);
} else if(l.type == GRU){
forward_gru_layer(l, state);
} else if(l.type == CRNN){
forward_crnn_layer(l, state);
} else if(l.type == CROP){
forward_crop_layer(l, state);
} else if(l.type == COST){
forward_cost_layer(l, state);
} else if(l.type == SOFTMAX){
forward_softmax_layer(l, state);
} else if(l.type == MAXPOOL){
forward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
forward_avgpool_layer(l, state);
} else if(l.type == DROPOUT){
forward_dropout_layer(l, state);
} else if(l.type == ROUTE){
forward_route_layer(l, net);
} else if(l.type == SHORTCUT){
forward_shortcut_layer(l, state);
}
state.input = l.output;
}
}
void update_network(network net)
{
int i;
int update_batch = net.batch*net.subdivisions;
float rate = get_current_rate(net);
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == DECONVOLUTIONAL){
update_deconvolutional_layer(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == RNN){
update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == GRU){
update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == CRNN){
update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
}
}
float *get_network_output(network net)
{
#ifdef GPU
return get_network_output_gpu(net);
#endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
}
float get_network_cost(network net)
{
int i;
float sum = 0;
int count = 0;
for(i = 0; i < net.n; ++i){
if(net.layers[i].type == COST){
sum += net.layers[i].cost[0];
++count;
}
if(net.layers[i].type == DETECTION){
sum += net.layers[i].cost[0];
++count;
}
}
return sum/count;
}
int get_predicted_class_network(network net)
{
float *out = get_network_output(net);
int k = get_network_output_size(net);
return max_index(out, k);
}
void backward_network(network net, network_state state)
{
int i;
float *original_input = state.input;
float *original_delta = state.delta;
state.workspace = net.workspace;
for(i = net.n-1; i >= 0; --i){
state.index = i;
if(i == 0){
state.input = original_input;
state.delta = original_delta;
}else{
layer prev = net.layers[i-1];
state.input = prev.output;
state.delta = prev.delta;
}
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
backward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
backward_deconvolutional_layer(l, state);
} else if(l.type == ACTIVE){
backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
} else if(l.type == BATCHNORM){
backward_batchnorm_layer(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
backward_avgpool_layer(l, state);
} else if(l.type == DROPOUT){
backward_dropout_layer(l, state);
} else if(l.type == DETECTION){
backward_detection_layer(l, state);
} else if(l.type == SOFTMAX){
if(i != 0) backward_softmax_layer(l, state);
} else if(l.type == CONNECTED){
backward_connected_layer(l, state);
} else if(l.type == RNN){
backward_rnn_layer(l, state);
} else if(l.type == GRU){
backward_gru_layer(l, state);
} else if(l.type == CRNN){
backward_crnn_layer(l, state);
} else if(l.type == LOCAL){
backward_local_layer(l, state);
} else if(l.type == COST){
backward_cost_layer(l, state);
} else if(l.type == ROUTE){
backward_route_layer(l, net);
} else if(l.type == SHORTCUT){
backward_shortcut_layer(l, state);
}
}
}
float train_network_datum(network net, float *x, float *y)
{
*net.seen += net.batch;
#ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
network_state state;
state.index = 0;
state.net = net;
state.input = x;
state.delta = 0;
state.truth = y;
state.train = 1;
forward_network(net, state);
backward_network(net, state);
float error = get_network_cost(net);
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
return error;
}
float train_network_sgd(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_random_batch(d, batch, X, y);
float err = train_network_datum(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float train_network(network net, data d)
{
int batch = net.batch;
int n = d.X.rows / batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
float err = train_network_datum(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n)
{
int i,j;
network_state state;
state.index = 0;
state.net = net;
state.train = 1;
state.delta = 0;
float sum = 0;
int batch = 2;
for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows;
state.input = d.X.vals[index];
state.truth = d.y.vals[index];
forward_network(net, state);
backward_network(net, state);
sum += get_network_cost(net);
}
update_network(net);
}
return (float)sum/(n*batch);
}
void set_batch_network(network *net, int b)
{
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].batch = b;
}
}
int resize_network(network *net, int w, int h)
{
int i;
//if(w == net->w && h == net->h) return 0;
net->w = w;
net->h = h;
int inputs = 0;
size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
}else if(l.type == CROP){
resize_crop_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else if(l.type == AVGPOOL){
resize_avgpool_layer(&l, w, h);
}else if(l.type == NORMALIZATION){
resize_normalization_layer(&l, w, h);
}else if(l.type == COST){
resize_cost_layer(&l, inputs);
}else{
error("Cannot resize this type of layer");
}
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
#ifdef GPU
cuda_free(net->workspace);
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
#else
free(net->workspace);
net->workspace = calloc(1, workspace_size);
#endif
//fprintf(stderr, " Done!\n");
return 0;
}
int get_network_output_size(network net)
{
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].outputs;
}
int get_network_input_size(network net)
{
return net.layers[0].inputs;
}
detection_layer get_network_detection_layer(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.layers[i].type == DETECTION){
return net.layers[i];
}
}
fprintf(stderr, "Detection layer not found!!\n");
detection_layer l = {0};
return l;
}
image get_network_image_layer(network net, int i)
{
layer l = net.layers[i];
if (l.out_w && l.out_h && l.out_c){
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
}
image def = {0};
return def;
}
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
image def = {0};
return def;
}
void visualize_network(network net)
{
image *prev = 0;
int i;
char buff[256];
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
prev = visualize_convolutional_layer(l, buff, prev);
}
}
}
void top_predictions(network net, int k, int *index)
{
int size = get_network_output_size(net);
float *out = get_network_output(net);
top_k(out, size, k, index);
}
float *network_predict(network net, float *input)
{
#ifdef GPU
if(gpu_index >= 0) return network_predict_gpu(net, input);
#endif
network_state state;
state.net = net;
state.index = 0;
state.input = input;
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network(net, state);
float *out = get_network_output(net);
return out;
}
matrix network_predict_data_multi(network net, data test, int n)
{
int i,j,b,m;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.rows, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
for(m = 0; m < n; ++m){
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] += out[j+b*k]/n;
}
}
}
}
free(X);
return pred;
}
matrix network_predict_data(network net, data test)
{
int i,j,b;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
}
}
free(X);
return pred;
}
void print_network(network net)
{
int i,j;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
float *output = l.output;
int n = l.outputs;
float mean = mean_array(output, n);
float vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
if(n > 100) n = 100;
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
}
}
void compare_networks(network n1, network n2, data test)
{
matrix g1 = network_predict_data(n1, test);
matrix g2 = network_predict_data(n2, test);
int i;
int a,b,c,d;
a = b = c = d = 0;
for(i = 0; i < g1.rows; ++i){
int truth = max_index(test.y.vals[i], test.y.cols);
int p1 = max_index(g1.vals[i], g1.cols);
int p2 = max_index(g2.vals[i], g2.cols);
if(p1 == truth){
if(p2 == truth) ++d;
else ++c;
}else{
if(p2 == truth) ++b;
else ++a;
}
}
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
float num = pow((abs(b - c) - 1.), 2.);
float den = b + c;
printf("%f\n", num/den);
}
float network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
float *network_accuracies(network net, data d, int n)
{
static float acc[2];
matrix guess = network_predict_data(net, d);
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
acc[1] = matrix_topk_accuracy(d.y, guess, n);
free_matrix(guess);
return acc;
}
float network_accuracy_multi(network net, data d, int n)
{
matrix guess = network_predict_data_multi(net, d, n);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
void free_network(network net)
{
int i;
for(i = 0; i < net.n; ++i){
free_layer(net.layers[i]);
}
free(net.layers);
#ifdef GPU
if(*net.input_gpu) cuda_free(*net.input_gpu);
if(*net.truth_gpu) cuda_free(*net.truth_gpu);
if(net.input_gpu) free(net.input_gpu);
if(net.truth_gpu) free(net.truth_gpu);
#endif
}