mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
207 lines
6.5 KiB
Plaintext
207 lines
6.5 KiB
Plaintext
#include "cuda_runtime.h"
|
|
#include "curand.h"
|
|
#include "cublas_v2.h"
|
|
|
|
extern "C" {
|
|
#include "activations.h"
|
|
#include "cuda.h"
|
|
}
|
|
|
|
|
|
__device__ float lhtan_activate_kernel(float x)
|
|
{
|
|
if(x < 0) return .001f*x;
|
|
if(x > 1) return .001f*(x-1.f) + 1.f;
|
|
return x;
|
|
}
|
|
__device__ float lhtan_gradient_kernel(float x)
|
|
{
|
|
if(x > 0 && x < 1) return 1;
|
|
return .001;
|
|
}
|
|
|
|
__device__ float hardtan_activate_kernel(float x)
|
|
{
|
|
if (x < -1) return -1;
|
|
if (x > 1) return 1;
|
|
return x;
|
|
}
|
|
__device__ float linear_activate_kernel(float x){return x;}
|
|
__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
|
|
__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
|
|
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
|
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
|
|
__device__ float selu_activate_kernel(float x){return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x)-1);}
|
|
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
|
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
|
|
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
|
|
__device__ float tanh_activate_kernel(float x){return (2.f/(1 + expf(-2*x)) - 1);}
|
|
__device__ float plse_activate_kernel(float x)
|
|
{
|
|
if(x < -4) return .01f * (x + 4);
|
|
if(x > 4) return .01f * (x - 4) + 1;
|
|
return .125f*x + .5f;
|
|
}
|
|
__device__ float stair_activate_kernel(float x)
|
|
{
|
|
int n = floorf(x);
|
|
if (n%2 == 0) return floorf(x/2);
|
|
else return (x - n) + floorf(x/2);
|
|
}
|
|
|
|
|
|
__device__ float hardtan_gradient_kernel(float x)
|
|
{
|
|
if (x > -1 && x < 1) return 1;
|
|
return 0;
|
|
}
|
|
__device__ float linear_gradient_kernel(float x){return 1;}
|
|
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
|
|
__device__ float loggy_gradient_kernel(float x)
|
|
{
|
|
float y = (x+1)/2;
|
|
return 2*(1-y)*y;
|
|
}
|
|
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
|
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
|
|
__device__ float selu_gradient_kernel(float x){return (x >= 0)*1.0507 + (x < 0)*(x + 1.0507*1.6732);}
|
|
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
|
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
|
|
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
|
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
|
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
|
|
__device__ float stair_gradient_kernel(float x)
|
|
{
|
|
if (floorf(x) == x) return 0;
|
|
return 1;
|
|
}
|
|
|
|
__device__ float activate_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch(a){
|
|
case LINEAR:
|
|
return linear_activate_kernel(x);
|
|
case LOGISTIC:
|
|
return logistic_activate_kernel(x);
|
|
case LOGGY:
|
|
return loggy_activate_kernel(x);
|
|
case RELU:
|
|
return relu_activate_kernel(x);
|
|
case ELU:
|
|
return elu_activate_kernel(x);
|
|
case SELU:
|
|
return selu_activate_kernel(x);
|
|
case RELIE:
|
|
return relie_activate_kernel(x);
|
|
case RAMP:
|
|
return ramp_activate_kernel(x);
|
|
case LEAKY:
|
|
return leaky_activate_kernel(x);
|
|
case TANH:
|
|
return tanh_activate_kernel(x);
|
|
case PLSE:
|
|
return plse_activate_kernel(x);
|
|
case STAIR:
|
|
return stair_activate_kernel(x);
|
|
case HARDTAN:
|
|
return hardtan_activate_kernel(x);
|
|
case LHTAN:
|
|
return lhtan_activate_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__device__ float gradient_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch(a){
|
|
case LINEAR:
|
|
return linear_gradient_kernel(x);
|
|
case LOGISTIC:
|
|
return logistic_gradient_kernel(x);
|
|
case LOGGY:
|
|
return loggy_gradient_kernel(x);
|
|
case RELU:
|
|
return relu_gradient_kernel(x);
|
|
case ELU:
|
|
return elu_gradient_kernel(x);
|
|
case SELU:
|
|
return selu_gradient_kernel(x);
|
|
case RELIE:
|
|
return relie_gradient_kernel(x);
|
|
case RAMP:
|
|
return ramp_gradient_kernel(x);
|
|
case LEAKY:
|
|
return leaky_gradient_kernel(x);
|
|
case TANH:
|
|
return tanh_gradient_kernel(x);
|
|
case PLSE:
|
|
return plse_gradient_kernel(x);
|
|
case STAIR:
|
|
return stair_gradient_kernel(x);
|
|
case HARDTAN:
|
|
return hardtan_gradient_kernel(x);
|
|
case LHTAN:
|
|
return lhtan_gradient_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
|
|
{
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int i = id % s;
|
|
int b = id / s;
|
|
float x1 = x[b*s + i];
|
|
float x2 = x[b*s + s/2 + i];
|
|
if(id < n) {
|
|
float de = dy[id];
|
|
dx[b*s + i] = x2*de;
|
|
dx[b*s + s/2 + i] = x1*de;
|
|
}
|
|
}
|
|
|
|
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
binary_gradient_array_kernel<<<cuda_gridsize(n/2), BLOCK>>>(x, dx, n/2, size, a, y);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
int i = id % s;
|
|
int b = id / s;
|
|
float x1 = x[b*s + i];
|
|
float x2 = x[b*s + s/2 + i];
|
|
if(id < n) y[id] = x1*x2;
|
|
}
|
|
|
|
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
|
|
{
|
|
binary_activate_array_kernel<<<cuda_gridsize(n/2), BLOCK>>>(x, n/2, size, a, y);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) x[i] = activate_kernel(x[i], a);
|
|
}
|
|
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
|
}
|
|
|
|
extern "C" void activate_array_gpu(float *x, int n, ACTIVATION a)
|
|
{
|
|
activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
extern "C" void gradient_array_gpu(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|