mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
1081 lines
28 KiB
C
1081 lines
28 KiB
C
#include <stdio.h>
|
|
#include <time.h>
|
|
#include <assert.h>
|
|
#include "network.h"
|
|
#include "image.h"
|
|
#include "data.h"
|
|
#include "utils.h"
|
|
#include "blas.h"
|
|
|
|
#include "crop_layer.h"
|
|
#include "connected_layer.h"
|
|
#include "gru_layer.h"
|
|
#include "rnn_layer.h"
|
|
#include "crnn_layer.h"
|
|
#include "local_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "activation_layer.h"
|
|
#include "detection_layer.h"
|
|
#include "region_layer.h"
|
|
#include "normalization_layer.h"
|
|
#include "batchnorm_layer.h"
|
|
#include "maxpool_layer.h"
|
|
#include "reorg_layer.h"
|
|
#include "avgpool_layer.h"
|
|
#include "cost_layer.h"
|
|
#include "softmax_layer.h"
|
|
#include "dropout_layer.h"
|
|
#include "route_layer.h"
|
|
#include "shortcut_layer.h"
|
|
#include "parser.h"
|
|
#include "data.h"
|
|
|
|
load_args get_base_args(network *net)
|
|
{
|
|
load_args args = {0};
|
|
args.w = net->w;
|
|
args.h = net->h;
|
|
args.size = net->w;
|
|
|
|
args.min = net->min_crop;
|
|
args.max = net->max_crop;
|
|
args.angle = net->angle;
|
|
args.aspect = net->aspect;
|
|
args.exposure = net->exposure;
|
|
args.center = net->center;
|
|
args.saturation = net->saturation;
|
|
args.hue = net->hue;
|
|
return args;
|
|
}
|
|
|
|
network *load_network(char *cfg, char *weights, int clear)
|
|
{
|
|
network *net = parse_network_cfg(cfg);
|
|
if(weights && weights[0] != 0){
|
|
load_weights(net, weights);
|
|
}
|
|
if(clear) (*net->seen) = 0;
|
|
return net;
|
|
}
|
|
|
|
size_t get_current_batch(network *net)
|
|
{
|
|
size_t batch_num = (*net->seen)/(net->batch*net->subdivisions);
|
|
return batch_num;
|
|
}
|
|
|
|
void reset_network_state(network *net, int b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < net->n; ++i) {
|
|
#ifdef GPU
|
|
layer l = net->layers[i];
|
|
if(l.state_gpu){
|
|
fill_gpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
|
}
|
|
if(l.h_gpu){
|
|
fill_gpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void reset_rnn(network *net)
|
|
{
|
|
reset_network_state(net, 0);
|
|
}
|
|
|
|
float get_current_rate(network *net)
|
|
{
|
|
size_t batch_num = get_current_batch(net);
|
|
int i;
|
|
float rate;
|
|
if (batch_num < net->burn_in) return net->learning_rate * pow((float)batch_num / net->burn_in, net->power);
|
|
switch (net->policy) {
|
|
case CONSTANT:
|
|
return net->learning_rate;
|
|
case STEP:
|
|
return net->learning_rate * pow(net->scale, batch_num/net->step);
|
|
case STEPS:
|
|
rate = net->learning_rate;
|
|
for(i = 0; i < net->num_steps; ++i){
|
|
if(net->steps[i] > batch_num) return rate;
|
|
rate *= net->scales[i];
|
|
}
|
|
return rate;
|
|
case EXP:
|
|
return net->learning_rate * pow(net->gamma, batch_num);
|
|
case POLY:
|
|
return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power);
|
|
case RANDOM:
|
|
return net->learning_rate * pow(rand_uniform(0,1), net->power);
|
|
case SIG:
|
|
return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step))));
|
|
default:
|
|
fprintf(stderr, "Policy is weird!\n");
|
|
return net->learning_rate;
|
|
}
|
|
}
|
|
|
|
char *get_layer_string(LAYER_TYPE a)
|
|
{
|
|
switch(a){
|
|
case CONVOLUTIONAL:
|
|
return "convolutional";
|
|
case ACTIVE:
|
|
return "activation";
|
|
case LOCAL:
|
|
return "local";
|
|
case DECONVOLUTIONAL:
|
|
return "deconvolutional";
|
|
case CONNECTED:
|
|
return "connected";
|
|
case RNN:
|
|
return "rnn";
|
|
case GRU:
|
|
return "gru";
|
|
case LSTM:
|
|
return "lstm";
|
|
case CRNN:
|
|
return "crnn";
|
|
case MAXPOOL:
|
|
return "maxpool";
|
|
case REORG:
|
|
return "reorg";
|
|
case AVGPOOL:
|
|
return "avgpool";
|
|
case SOFTMAX:
|
|
return "softmax";
|
|
case DETECTION:
|
|
return "detection";
|
|
case REGION:
|
|
return "region";
|
|
case DROPOUT:
|
|
return "dropout";
|
|
case CROP:
|
|
return "crop";
|
|
case COST:
|
|
return "cost";
|
|
case ROUTE:
|
|
return "route";
|
|
case SHORTCUT:
|
|
return "shortcut";
|
|
case NORMALIZATION:
|
|
return "normalization";
|
|
case BATCHNORM:
|
|
return "batchnorm";
|
|
default:
|
|
break;
|
|
}
|
|
return "none";
|
|
}
|
|
|
|
network *make_network(int n)
|
|
{
|
|
network *net = calloc(1, sizeof(network));
|
|
net->n = n;
|
|
net->layers = calloc(net->n, sizeof(layer));
|
|
net->seen = calloc(1, sizeof(size_t));
|
|
net->t = calloc(1, sizeof(int));
|
|
net->cost = calloc(1, sizeof(float));
|
|
return net;
|
|
}
|
|
|
|
void forward_network(network *netp)
|
|
{
|
|
#ifdef GPU
|
|
if(netp->gpu_index >= 0){
|
|
forward_network_gpu(netp);
|
|
return;
|
|
}
|
|
#endif
|
|
network net = *netp;
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
net.index = i;
|
|
layer l = net.layers[i];
|
|
if(l.delta){
|
|
fill_cpu(l.outputs * l.batch, 0, l.delta, 1);
|
|
}
|
|
l.forward(l, net);
|
|
net.input = l.output;
|
|
if(l.truth) {
|
|
net.truth = l.output;
|
|
}
|
|
}
|
|
calc_network_cost(netp);
|
|
}
|
|
|
|
void update_network(network *netp)
|
|
{
|
|
#ifdef GPU
|
|
if(netp->gpu_index >= 0){
|
|
update_network_gpu(netp);
|
|
return;
|
|
}
|
|
#endif
|
|
network net = *netp;
|
|
int i;
|
|
update_args a = {0};
|
|
a.batch = net.batch*net.subdivisions;
|
|
a.learning_rate = get_current_rate(netp);
|
|
a.momentum = net.momentum;
|
|
a.decay = net.decay;
|
|
a.adam = net.adam;
|
|
a.B1 = net.B1;
|
|
a.B2 = net.B2;
|
|
a.eps = net.eps;
|
|
++*net.t;
|
|
a.t = *net.t;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.update){
|
|
l.update(l, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
void calc_network_cost(network *netp)
|
|
{
|
|
network net = *netp;
|
|
int i;
|
|
float sum = 0;
|
|
int count = 0;
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.layers[i].cost){
|
|
sum += net.layers[i].cost[0];
|
|
++count;
|
|
}
|
|
}
|
|
*net.cost = sum/count;
|
|
}
|
|
|
|
int get_predicted_class_network(network *net)
|
|
{
|
|
return max_index(net->output, net->outputs);
|
|
}
|
|
|
|
void backward_network(network *netp)
|
|
{
|
|
#ifdef GPU
|
|
if(netp->gpu_index >= 0){
|
|
backward_network_gpu(netp);
|
|
return;
|
|
}
|
|
#endif
|
|
network net = *netp;
|
|
int i;
|
|
network orig = net;
|
|
for(i = net.n-1; i >= 0; --i){
|
|
layer l = net.layers[i];
|
|
if(l.stopbackward) break;
|
|
if(i == 0){
|
|
net = orig;
|
|
}else{
|
|
layer prev = net.layers[i-1];
|
|
net.input = prev.output;
|
|
net.delta = prev.delta;
|
|
}
|
|
net.index = i;
|
|
l.backward(l, net);
|
|
}
|
|
}
|
|
|
|
float train_network_datum(network *net)
|
|
{
|
|
*net->seen += net->batch;
|
|
net->train = 1;
|
|
forward_network(net);
|
|
backward_network(net);
|
|
float error = *net->cost;
|
|
if(((*net->seen)/net->batch)%net->subdivisions == 0) update_network(net);
|
|
return error;
|
|
}
|
|
|
|
float train_network_sgd(network *net, data d, int n)
|
|
{
|
|
int batch = net->batch;
|
|
|
|
int i;
|
|
float sum = 0;
|
|
for(i = 0; i < n; ++i){
|
|
get_random_batch(d, batch, net->input, net->truth);
|
|
float err = train_network_datum(net);
|
|
sum += err;
|
|
}
|
|
return (float)sum/(n*batch);
|
|
}
|
|
|
|
float train_network(network *net, data d)
|
|
{
|
|
assert(d.X.rows % net->batch == 0);
|
|
int batch = net->batch;
|
|
int n = d.X.rows / batch;
|
|
|
|
int i;
|
|
float sum = 0;
|
|
for(i = 0; i < n; ++i){
|
|
get_next_batch(d, batch, i*batch, net->input, net->truth);
|
|
float err = train_network_datum(net);
|
|
sum += err;
|
|
}
|
|
return (float)sum/(n*batch);
|
|
}
|
|
|
|
void set_temp_network(network *net, float t)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
net->layers[i].temperature = t;
|
|
}
|
|
}
|
|
|
|
|
|
void set_batch_network(network *net, int b)
|
|
{
|
|
net->batch = b;
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
net->layers[i].batch = b;
|
|
#ifdef CUDNN
|
|
if(net->layers[i].type == CONVOLUTIONAL){
|
|
cudnn_convolutional_setup(net->layers + i);
|
|
}
|
|
if(net->layers[i].type == DECONVOLUTIONAL){
|
|
layer *l = net->layers + i;
|
|
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, l->out_h, l->out_w);
|
|
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int resize_network(network *net, int w, int h)
|
|
{
|
|
#ifdef GPU
|
|
cuda_set_device(net->gpu_index);
|
|
cuda_free(net->workspace);
|
|
#endif
|
|
int i;
|
|
//if(w == net->w && h == net->h) return 0;
|
|
net->w = w;
|
|
net->h = h;
|
|
int inputs = 0;
|
|
size_t workspace_size = 0;
|
|
//fprintf(stderr, "Resizing to %d x %d...\n", w, h);
|
|
//fflush(stderr);
|
|
for (i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
resize_convolutional_layer(&l, w, h);
|
|
}else if(l.type == CROP){
|
|
resize_crop_layer(&l, w, h);
|
|
}else if(l.type == MAXPOOL){
|
|
resize_maxpool_layer(&l, w, h);
|
|
}else if(l.type == REGION){
|
|
resize_region_layer(&l, w, h);
|
|
}else if(l.type == ROUTE){
|
|
resize_route_layer(&l, net);
|
|
}else if(l.type == REORG){
|
|
resize_reorg_layer(&l, w, h);
|
|
}else if(l.type == AVGPOOL){
|
|
resize_avgpool_layer(&l, w, h);
|
|
}else if(l.type == NORMALIZATION){
|
|
resize_normalization_layer(&l, w, h);
|
|
}else if(l.type == COST){
|
|
resize_cost_layer(&l, inputs);
|
|
}else{
|
|
error("Cannot resize this type of layer");
|
|
}
|
|
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
|
if(l.workspace_size > 2000000000) assert(0);
|
|
inputs = l.outputs;
|
|
net->layers[i] = l;
|
|
w = l.out_w;
|
|
h = l.out_h;
|
|
if(l.type == AVGPOOL) break;
|
|
}
|
|
layer out = get_network_output_layer(net);
|
|
net->inputs = net->layers[0].inputs;
|
|
net->outputs = out.outputs;
|
|
net->truths = out.outputs;
|
|
if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
|
|
net->output = out.output;
|
|
free(net->input);
|
|
free(net->truth);
|
|
net->input = calloc(net->inputs*net->batch, sizeof(float));
|
|
net->truth = calloc(net->truths*net->batch, sizeof(float));
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
cuda_free(net->input_gpu);
|
|
cuda_free(net->truth_gpu);
|
|
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
|
|
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
|
|
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
|
|
}else {
|
|
free(net->workspace);
|
|
net->workspace = calloc(1, workspace_size);
|
|
}
|
|
#else
|
|
free(net->workspace);
|
|
net->workspace = calloc(1, workspace_size);
|
|
#endif
|
|
//fprintf(stderr, " Done!\n");
|
|
return 0;
|
|
}
|
|
|
|
layer get_network_detection_layer(network *net)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
if(net->layers[i].type == DETECTION){
|
|
return net->layers[i];
|
|
}
|
|
}
|
|
fprintf(stderr, "Detection layer not found!!\n");
|
|
layer l = {0};
|
|
return l;
|
|
}
|
|
|
|
image get_network_image_layer(network *net, int i)
|
|
{
|
|
layer l = net->layers[i];
|
|
#ifdef GPU
|
|
//cuda_pull_array(l.output_gpu, l.output, l.outputs);
|
|
#endif
|
|
if (l.out_w && l.out_h && l.out_c){
|
|
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
|
|
}
|
|
image def = {0};
|
|
return def;
|
|
}
|
|
|
|
image get_network_image(network *net)
|
|
{
|
|
int i;
|
|
for(i = net->n-1; i >= 0; --i){
|
|
image m = get_network_image_layer(net, i);
|
|
if(m.h != 0) return m;
|
|
}
|
|
image def = {0};
|
|
return def;
|
|
}
|
|
|
|
void visualize_network(network *net)
|
|
{
|
|
image *prev = 0;
|
|
int i;
|
|
char buff[256];
|
|
for(i = 0; i < net->n; ++i){
|
|
sprintf(buff, "Layer %d", i);
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
prev = visualize_convolutional_layer(l, buff, prev);
|
|
}
|
|
}
|
|
}
|
|
|
|
void top_predictions(network *net, int k, int *index)
|
|
{
|
|
top_k(net->output, net->outputs, k, index);
|
|
}
|
|
|
|
|
|
float *network_predict(network *net, float *input)
|
|
{
|
|
network orig = *net;
|
|
net->input = input;
|
|
net->truth = 0;
|
|
net->train = 0;
|
|
net->delta = 0;
|
|
forward_network(net);
|
|
float *out = net->output;
|
|
*net = orig;
|
|
return out;
|
|
}
|
|
|
|
int num_boxes(network *net)
|
|
{
|
|
layer l = net->layers[net->n-1];
|
|
return l.w*l.h*l.n;
|
|
}
|
|
|
|
box *make_boxes(network *net)
|
|
{
|
|
layer l = net->layers[net->n-1];
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
|
return boxes;
|
|
}
|
|
|
|
float **make_probs(network *net)
|
|
{
|
|
int j;
|
|
layer l = net->layers[net->n-1];
|
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
|
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
|
|
return probs;
|
|
}
|
|
|
|
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs)
|
|
{
|
|
network_predict_image(net, im);
|
|
layer l = net->layers[net->n-1];
|
|
if(l.type == REGION){
|
|
get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, 0, 0, 0, hier_thresh, 0);
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
|
|
}
|
|
}
|
|
|
|
float *network_predict_image(network *net, image im)
|
|
{
|
|
image imr = letterbox_image(im, net->w, net->h);
|
|
set_batch_network(net, 1);
|
|
float *p = network_predict(net, imr.data);
|
|
free_image(imr);
|
|
return p;
|
|
}
|
|
|
|
int network_width(network *net){return net->w;}
|
|
int network_height(network *net){return net->h;}
|
|
|
|
matrix network_predict_data_multi(network *net, data test, int n)
|
|
{
|
|
int i,j,b,m;
|
|
int k = net->outputs;
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
float *X = calloc(net->batch*test.X.rows, sizeof(float));
|
|
for(i = 0; i < test.X.rows; i += net->batch){
|
|
for(b = 0; b < net->batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
}
|
|
for(m = 0; m < n; ++m){
|
|
float *out = network_predict(net, X);
|
|
for(b = 0; b < net->batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
for(j = 0; j < k; ++j){
|
|
pred.vals[i+b][j] += out[j+b*k]/n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(X);
|
|
return pred;
|
|
}
|
|
|
|
matrix network_predict_data(network *net, data test)
|
|
{
|
|
int i,j,b;
|
|
int k = net->outputs;
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
float *X = calloc(net->batch*test.X.cols, sizeof(float));
|
|
for(i = 0; i < test.X.rows; i += net->batch){
|
|
for(b = 0; b < net->batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
}
|
|
float *out = network_predict(net, X);
|
|
for(b = 0; b < net->batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
for(j = 0; j < k; ++j){
|
|
pred.vals[i+b][j] = out[j+b*k];
|
|
}
|
|
}
|
|
}
|
|
free(X);
|
|
return pred;
|
|
}
|
|
|
|
void print_network(network *net)
|
|
{
|
|
int i,j;
|
|
for(i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
float *output = l.output;
|
|
int n = l.outputs;
|
|
float mean = mean_array(output, n);
|
|
float vari = variance_array(output, n);
|
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
|
if(n > 100) n = 100;
|
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
|
if(n == 100)fprintf(stderr,".....\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
void compare_networks(network *n1, network *n2, data test)
|
|
{
|
|
matrix g1 = network_predict_data(n1, test);
|
|
matrix g2 = network_predict_data(n2, test);
|
|
int i;
|
|
int a,b,c,d;
|
|
a = b = c = d = 0;
|
|
for(i = 0; i < g1.rows; ++i){
|
|
int truth = max_index(test.y.vals[i], test.y.cols);
|
|
int p1 = max_index(g1.vals[i], g1.cols);
|
|
int p2 = max_index(g2.vals[i], g2.cols);
|
|
if(p1 == truth){
|
|
if(p2 == truth) ++d;
|
|
else ++c;
|
|
}else{
|
|
if(p2 == truth) ++b;
|
|
else ++a;
|
|
}
|
|
}
|
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
|
|
float num = pow((abs(b - c) - 1.), 2.);
|
|
float den = b + c;
|
|
printf("%f\n", num/den);
|
|
}
|
|
|
|
float network_accuracy(network *net, data d)
|
|
{
|
|
matrix guess = network_predict_data(net, d);
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
float *network_accuracies(network *net, data d, int n)
|
|
{
|
|
static float acc[2];
|
|
matrix guess = network_predict_data(net, d);
|
|
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
|
|
acc[1] = matrix_topk_accuracy(d.y, guess, n);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
layer get_network_output_layer(network *net)
|
|
{
|
|
int i;
|
|
for(i = net->n - 1; i >= 0; --i){
|
|
if(net->layers[i].type != COST) break;
|
|
}
|
|
return net->layers[i];
|
|
}
|
|
|
|
float network_accuracy_multi(network *net, data d, int n)
|
|
{
|
|
matrix guess = network_predict_data_multi(net, d, n);
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
void free_network(network *net)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
free_layer(net->layers[i]);
|
|
}
|
|
free(net->layers);
|
|
if(net->input) free(net->input);
|
|
if(net->truth) free(net->truth);
|
|
#ifdef GPU
|
|
if(net->input_gpu) cuda_free(net->input_gpu);
|
|
if(net->truth_gpu) cuda_free(net->truth_gpu);
|
|
#endif
|
|
free(net);
|
|
}
|
|
|
|
// Some day...
|
|
// ^ What the hell is this comment for?
|
|
|
|
|
|
layer network_output_layer(network *net)
|
|
{
|
|
int i;
|
|
for(i = net->n - 1; i >= 0; --i){
|
|
if(net->layers[i].type != COST) break;
|
|
}
|
|
return net->layers[i];
|
|
}
|
|
|
|
int network_inputs(network *net)
|
|
{
|
|
return net->layers[0].inputs;
|
|
}
|
|
|
|
int network_outputs(network *net)
|
|
{
|
|
return network_output_layer(net).outputs;
|
|
}
|
|
|
|
float *network_output(network *net)
|
|
{
|
|
return network_output_layer(net).output;
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
void forward_network_gpu(network *netp)
|
|
{
|
|
network net = *netp;
|
|
cuda_set_device(net.gpu_index);
|
|
cuda_push_array(net.input_gpu, net.input, net.inputs*net.batch);
|
|
if(net.truth){
|
|
cuda_push_array(net.truth_gpu, net.truth, net.truths*net.batch);
|
|
}
|
|
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
net.index = i;
|
|
layer l = net.layers[i];
|
|
if(l.delta_gpu){
|
|
fill_gpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
|
|
}
|
|
l.forward_gpu(l, net);
|
|
net.input_gpu = l.output_gpu;
|
|
net.input = l.output;
|
|
if(l.truth) {
|
|
net.truth_gpu = l.output_gpu;
|
|
net.truth = l.output;
|
|
}
|
|
}
|
|
pull_network_output(netp);
|
|
calc_network_cost(netp);
|
|
}
|
|
|
|
void backward_network_gpu(network *netp)
|
|
{
|
|
int i;
|
|
network net = *netp;
|
|
network orig = net;
|
|
cuda_set_device(net.gpu_index);
|
|
for(i = net.n-1; i >= 0; --i){
|
|
layer l = net.layers[i];
|
|
if(l.stopbackward) break;
|
|
if(i == 0){
|
|
net = orig;
|
|
}else{
|
|
layer prev = net.layers[i-1];
|
|
net.input = prev.output;
|
|
net.delta = prev.delta;
|
|
net.input_gpu = prev.output_gpu;
|
|
net.delta_gpu = prev.delta_gpu;
|
|
}
|
|
net.index = i;
|
|
l.backward_gpu(l, net);
|
|
}
|
|
}
|
|
|
|
void update_network_gpu(network *netp)
|
|
{
|
|
network net = *netp;
|
|
cuda_set_device(net.gpu_index);
|
|
int i;
|
|
update_args a = {0};
|
|
a.batch = net.batch*net.subdivisions;
|
|
a.learning_rate = get_current_rate(netp);
|
|
a.momentum = net.momentum;
|
|
a.decay = net.decay;
|
|
a.adam = net.adam;
|
|
a.B1 = net.B1;
|
|
a.B2 = net.B2;
|
|
a.eps = net.eps;
|
|
++*net.t;
|
|
a.t = (*net.t);
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.update_gpu){
|
|
l.update_gpu(l, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
void harmless_update_network_gpu(network *netp)
|
|
{
|
|
network net = *netp;
|
|
cuda_set_device(net.gpu_index);
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.weight_updates_gpu) fill_gpu(l.nweights, 0, l.weight_updates_gpu, 1);
|
|
if(l.bias_updates_gpu) fill_gpu(l.nbiases, 0, l.bias_updates_gpu, 1);
|
|
if(l.scale_updates_gpu) fill_gpu(l.nbiases, 0, l.scale_updates_gpu, 1);
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
network *net;
|
|
data d;
|
|
float *err;
|
|
} train_args;
|
|
|
|
void *train_thread(void *ptr)
|
|
{
|
|
train_args args = *(train_args*)ptr;
|
|
free(ptr);
|
|
cuda_set_device(args.net->gpu_index);
|
|
*args.err = train_network(args.net, args.d);
|
|
return 0;
|
|
}
|
|
|
|
pthread_t train_network_in_thread(network *net, data d, float *err)
|
|
{
|
|
pthread_t thread;
|
|
train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
|
|
ptr->net = net;
|
|
ptr->d = d;
|
|
ptr->err = err;
|
|
if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
|
|
return thread;
|
|
}
|
|
|
|
void merge_weights(layer l, layer base)
|
|
{
|
|
if (l.type == CONVOLUTIONAL) {
|
|
axpy_cpu(l.n, 1, l.bias_updates, 1, base.biases, 1);
|
|
axpy_cpu(l.nweights, 1, l.weight_updates, 1, base.weights, 1);
|
|
if (l.scales) {
|
|
axpy_cpu(l.n, 1, l.scale_updates, 1, base.scales, 1);
|
|
}
|
|
} else if(l.type == CONNECTED) {
|
|
axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.biases, 1);
|
|
axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weights, 1);
|
|
}
|
|
}
|
|
|
|
void scale_weights(layer l, float s)
|
|
{
|
|
if (l.type == CONVOLUTIONAL) {
|
|
scal_cpu(l.n, s, l.biases, 1);
|
|
scal_cpu(l.nweights, s, l.weights, 1);
|
|
if (l.scales) {
|
|
scal_cpu(l.n, s, l.scales, 1);
|
|
}
|
|
} else if(l.type == CONNECTED) {
|
|
scal_cpu(l.outputs, s, l.biases, 1);
|
|
scal_cpu(l.outputs*l.inputs, s, l.weights, 1);
|
|
}
|
|
}
|
|
|
|
|
|
void pull_weights(layer l)
|
|
{
|
|
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
|
|
cuda_pull_array(l.biases_gpu, l.bias_updates, l.n);
|
|
cuda_pull_array(l.weights_gpu, l.weight_updates, l.nweights);
|
|
if(l.scales) cuda_pull_array(l.scales_gpu, l.scale_updates, l.n);
|
|
} else if(l.type == CONNECTED){
|
|
cuda_pull_array(l.biases_gpu, l.bias_updates, l.outputs);
|
|
cuda_pull_array(l.weights_gpu, l.weight_updates, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
|
|
void push_weights(layer l)
|
|
{
|
|
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
|
|
cuda_push_array(l.biases_gpu, l.biases, l.n);
|
|
cuda_push_array(l.weights_gpu, l.weights, l.nweights);
|
|
if(l.scales) cuda_push_array(l.scales_gpu, l.scales, l.n);
|
|
} else if(l.type == CONNECTED){
|
|
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
|
cuda_push_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
|
|
void distribute_weights(layer l, layer base)
|
|
{
|
|
if (l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL) {
|
|
cuda_push_array(l.biases_gpu, base.biases, l.n);
|
|
cuda_push_array(l.weights_gpu, base.weights, l.nweights);
|
|
if (base.scales) cuda_push_array(l.scales_gpu, base.scales, l.n);
|
|
} else if (l.type == CONNECTED) {
|
|
cuda_push_array(l.biases_gpu, base.biases, l.outputs);
|
|
cuda_push_array(l.weights_gpu, base.weights, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
void pull_updates(layer l)
|
|
{
|
|
if(l.type == CONVOLUTIONAL){
|
|
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
|
|
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
|
|
if(l.scale_updates) cuda_pull_array(l.scale_updates_gpu, l.scale_updates, l.n);
|
|
} else if(l.type == CONNECTED){
|
|
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
|
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
|
|
void push_updates(layer l)
|
|
{
|
|
if(l.type == CONVOLUTIONAL){
|
|
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
|
|
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
|
|
if(l.scale_updates) cuda_push_array(l.scale_updates_gpu, l.scale_updates, l.n);
|
|
} else if(l.type == CONNECTED){
|
|
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
|
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
|
|
void update_layer(layer l, network net)
|
|
{
|
|
int update_batch = net.batch*net.subdivisions;
|
|
float rate = get_current_rate(net);
|
|
l.t = get_current_batch(net);
|
|
if(l.update_gpu){
|
|
l.update_gpu(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay);
|
|
}
|
|
}
|
|
void merge_updates(layer l, layer base)
|
|
{
|
|
if (l.type == CONVOLUTIONAL) {
|
|
axpy_cpu(l.n, 1, l.bias_updates, 1, base.bias_updates, 1);
|
|
axpy_cpu(l.nweights, 1, l.weight_updates, 1, base.weight_updates, 1);
|
|
if (l.scale_updates) {
|
|
axpy_cpu(l.n, 1, l.scale_updates, 1, base.scale_updates, 1);
|
|
}
|
|
} else if(l.type == CONNECTED) {
|
|
axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.bias_updates, 1);
|
|
axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weight_updates, 1);
|
|
}
|
|
}
|
|
|
|
void distribute_updates(layer l, layer base)
|
|
{
|
|
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
|
|
cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.n);
|
|
cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.nweights);
|
|
if(base.scale_updates) cuda_push_array(l.scale_updates_gpu, base.scale_updates, l.n);
|
|
} else if(l.type == CONNECTED){
|
|
cuda_push_array(l.bias_updates_gpu, base.bias_updates, l.outputs);
|
|
cuda_push_array(l.weight_updates_gpu, base.weight_updates, l.outputs*l.inputs);
|
|
}
|
|
}
|
|
*/
|
|
|
|
/*
|
|
void sync_layer(network *nets, int n, int j)
|
|
{
|
|
int i;
|
|
network net = nets[0];
|
|
layer base = net.layers[j];
|
|
scale_weights(base, 0);
|
|
for (i = 0; i < n; ++i) {
|
|
cuda_set_device(nets[i].gpu_index);
|
|
layer l = nets[i].layers[j];
|
|
pull_weights(l);
|
|
merge_weights(l, base);
|
|
}
|
|
scale_weights(base, 1./n);
|
|
for (i = 0; i < n; ++i) {
|
|
cuda_set_device(nets[i].gpu_index);
|
|
layer l = nets[i].layers[j];
|
|
distribute_weights(l, base);
|
|
}
|
|
}
|
|
*/
|
|
|
|
void sync_layer(network **nets, int n, int j)
|
|
{
|
|
int i;
|
|
network *net = nets[0];
|
|
layer base = net->layers[j];
|
|
scale_weights(base, 0);
|
|
for (i = 0; i < n; ++i) {
|
|
cuda_set_device(nets[i]->gpu_index);
|
|
layer l = nets[i]->layers[j];
|
|
pull_weights(l);
|
|
merge_weights(l, base);
|
|
}
|
|
scale_weights(base, 1./n);
|
|
for (i = 0; i < n; ++i) {
|
|
cuda_set_device(nets[i]->gpu_index);
|
|
layer l = nets[i]->layers[j];
|
|
distribute_weights(l, base);
|
|
}
|
|
}
|
|
|
|
typedef struct{
|
|
network **nets;
|
|
int n;
|
|
int j;
|
|
} sync_args;
|
|
|
|
void *sync_layer_thread(void *ptr)
|
|
{
|
|
sync_args args = *(sync_args*)ptr;
|
|
sync_layer(args.nets, args.n, args.j);
|
|
free(ptr);
|
|
return 0;
|
|
}
|
|
|
|
pthread_t sync_layer_in_thread(network **nets, int n, int j)
|
|
{
|
|
pthread_t thread;
|
|
sync_args *ptr = (sync_args *)calloc(1, sizeof(sync_args));
|
|
ptr->nets = nets;
|
|
ptr->n = n;
|
|
ptr->j = j;
|
|
if(pthread_create(&thread, 0, sync_layer_thread, ptr)) error("Thread creation failed");
|
|
return thread;
|
|
}
|
|
|
|
void sync_nets(network **nets, int n, int interval)
|
|
{
|
|
int j;
|
|
int layers = nets[0]->n;
|
|
pthread_t *threads = (pthread_t *) calloc(layers, sizeof(pthread_t));
|
|
|
|
*(nets[0]->seen) += interval * (n-1) * nets[0]->batch * nets[0]->subdivisions;
|
|
for (j = 0; j < n; ++j){
|
|
*(nets[j]->seen) = *(nets[0]->seen);
|
|
}
|
|
for (j = 0; j < layers; ++j) {
|
|
threads[j] = sync_layer_in_thread(nets, n, j);
|
|
}
|
|
for (j = 0; j < layers; ++j) {
|
|
pthread_join(threads[j], 0);
|
|
}
|
|
free(threads);
|
|
}
|
|
|
|
float train_networks(network **nets, int n, data d, int interval)
|
|
{
|
|
int i;
|
|
int batch = nets[0]->batch;
|
|
int subdivisions = nets[0]->subdivisions;
|
|
assert(batch * subdivisions * n == d.X.rows);
|
|
pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
|
|
float *errors = (float *) calloc(n, sizeof(float));
|
|
|
|
float sum = 0;
|
|
for(i = 0; i < n; ++i){
|
|
data p = get_data_part(d, i, n);
|
|
threads[i] = train_network_in_thread(nets[i], p, errors + i);
|
|
}
|
|
for(i = 0; i < n; ++i){
|
|
pthread_join(threads[i], 0);
|
|
//printf("%f\n", errors[i]);
|
|
sum += errors[i];
|
|
}
|
|
//cudaDeviceSynchronize();
|
|
if (get_current_batch(nets[0]) % interval == 0) {
|
|
printf("Syncing... ");
|
|
fflush(stdout);
|
|
sync_nets(nets, n, interval);
|
|
printf("Done!\n");
|
|
}
|
|
//cudaDeviceSynchronize();
|
|
free(threads);
|
|
free(errors);
|
|
return (float)sum/(n);
|
|
}
|
|
|
|
void pull_network_output(network *net)
|
|
{
|
|
layer l = get_network_output_layer(net);
|
|
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
|
}
|
|
|
|
#endif
|