darknet/src/convolutional_layer.c
Joseph Redmon 881d6ee9b6 fixed
2016-05-13 13:46:31 -07:00

533 lines
15 KiB
C

#include "convolutional_layer.h"
#include "utils.h"
#include "batchnorm_layer.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
void swap_binary(convolutional_layer *l)
{
float *swap = l->filters;
l->filters = l->binary_filters;
l->binary_filters = swap;
#ifdef GPU
swap = l->filters_gpu;
l->filters_gpu = l->binary_filters_gpu;
l->binary_filters_gpu = swap;
#endif
}
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
{
int i, k, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabs(filters[f*size + i]);
}
mean = mean / size;
scales[f] = mean;
for(i = 0; i < size/8; ++i){
binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
for(k = 0; k < 8; ++k){
}
}
}
}
void binarize_filters(float *filters, int n, int size, float *binary)
{
int i, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabs(filters[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
}
}
}
int convolutional_out_height(convolutional_layer l)
{
int h = l.h;
if (!l.pad) h -= l.size;
else h -= 1;
return h/l.stride + 1;
}
int convolutional_out_width(convolutional_layer l)
{
int w = l.w;
if (!l.pad) w -= l.size;
else w -= 1;
return w/l.stride + 1;
}
image get_convolutional_image(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.output);
}
image get_convolutional_delta(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.delta);
}
#ifdef CUDNN
size_t get_workspace_size(layer l){
size_t most = 0;
size_t s = 0;
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
l.srcTensorDesc,
l.filterDesc,
l.convDesc,
l.dstTensorDesc,
l.fw_algo,
&s);
if (s > most) most = s;
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
l.srcTensorDesc,
l.ddstTensorDesc,
l.convDesc,
l.dfilterDesc,
l.bf_algo,
&s);
if (s > most) most = s;
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
l.filterDesc,
l.ddstTensorDesc,
l.convDesc,
l.dsrcTensorDesc,
l.bd_algo,
&s);
if (s > most) most = s;
return most;
}
#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
int i;
convolutional_layer l = {0};
l.type = CONVOLUTIONAL;
l.h = h;
l.w = w;
l.c = c;
l.n = n;
l.binary = binary;
l.batch = batch;
l.stride = stride;
l.size = size;
l.pad = pad;
l.batch_normalize = batch_normalize;
l.filters = calloc(c*n*size*size, sizeof(float));
l.filter_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
l.out_w = out_w;
l.out_c = n;
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
l.workspace_size = out_h*out_w*size*size*c*sizeof(float);
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
if(binary){
l.binary_filters = calloc(c*n*size*size, sizeof(float));
l.cfilters = calloc(c*n*size*size, sizeof(char));
l.scales = calloc(n, sizeof(float));
}
if(batch_normalize){
l.scales = calloc(n, sizeof(float));
l.scale_updates = calloc(n, sizeof(float));
for(i = 0; i < n; ++i){
l.scales[i] = 1;
}
l.mean = calloc(n, sizeof(float));
l.variance = calloc(n, sizeof(float));
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
}
#ifdef GPU
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
if(binary){
l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
}
if(xnor){
l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
}
l.xnor = xnor;
if(batch_normalize){
l.mean_gpu = cuda_make_array(l.mean, n);
l.variance_gpu = cuda_make_array(l.variance, n);
l.rolling_mean_gpu = cuda_make_array(l.mean, n);
l.rolling_variance_gpu = cuda_make_array(l.variance, n);
l.mean_delta_gpu = cuda_make_array(l.mean, n);
l.variance_delta_gpu = cuda_make_array(l.variance, n);
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnCreateFilterDescriptor(&l.filterDesc);
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
cudnnCreateFilterDescriptor(&l.dfilterDesc);
cudnnCreateConvolutionDescriptor(&l.convDesc);
cudnnSetTensor4dDescriptor(l.dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w);
cudnnSetTensor4dDescriptor(l.ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
cudnnSetFilter4dDescriptor(l.dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size);
cudnnSetTensor4dDescriptor(l.srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w);
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
cudnnSetFilter4dDescriptor(l.filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size);
int padding = l.pad ? l.size/2 : 0;
cudnnSetConvolution2dDescriptor(l.convDesc, padding, padding, l.stride, l.stride, 1, 1, CUDNN_CROSS_CORRELATION);
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
l.srcTensorDesc,
l.filterDesc,
l.convDesc,
l.dstTensorDesc,
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
0,
&l.fw_algo);
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
l.filterDesc,
l.ddstTensorDesc,
l.convDesc,
l.dsrcTensorDesc,
CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
0,
&l.bd_algo);
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
l.srcTensorDesc,
l.ddstTensorDesc,
l.convDesc,
l.dfilterDesc,
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
0,
&l.bf_algo);
l.workspace_size = get_workspace_size(l);
#endif
#endif
l.activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
return l;
}
void denormalize_convolutional_layer(convolutional_layer l)
{
int i, j;
for(i = 0; i < l.n; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
for(j = 0; j < l.c*l.size*l.size; ++j){
l.filters[i*l.c*l.size*l.size + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
}
}
void test_convolutional_layer()
{
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
l.batch_normalize = 1;
float data[] = {1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3};
network_state state = {0};
state.input = data;
forward_convolutional_layer(l, state);
}
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
l->w = w;
l->h = h;
int out_w = convolutional_out_width(*l);
int out_h = convolutional_out_height(*l);
l->out_w = out_w;
l->out_h = out_h;
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
l->col_image = realloc(l->col_image,
out_h*out_w*l->size*l->size*l->c*sizeof(float));
l->output = realloc(l->output,
l->batch*out_h * out_w * l->n*sizeof(float));
l->delta = realloc(l->delta,
l->batch*out_h * out_w * l->n*sizeof(float));
#ifdef GPU
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
#endif
}
void add_bias(float *output, float *biases, int batch, int n, int size)
{
int i,j,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
for(j = 0; j < size; ++j){
output[(b*n + i)*size + j] += biases[i];
}
}
}
}
void scale_bias(float *output, float *scales, int batch, int n, int size)
{
int i,j,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
for(j = 0; j < size; ++j){
output[(b*n + i)*size + j] *= scales[i];
}
}
}
}
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
{
int i,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
bias_updates[i] += sum_array(delta+size*(i+b*n), size);
}
}
}
void forward_convolutional_layer(convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
int i;
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
/*
if(l.binary){
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
swap_binary(&l);
}
*/
if(l.binary){
int m = l.n;
int k = l.size*l.size*l.c;
int n = out_h*out_w;
char *a = l.cfilters;
float *b = l.col_image;
float *c = l.output;
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm_bin(m,n,k,1,a,k,b,n,c,n);
c += n*m;
state.input += l.c*l.h*l.w;
}
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
activate_array(l.output, m*n*l.batch, l.activation);
return;
}
int m = l.n;
int k = l.size*l.size*l.c;
int n = out_h*out_w;
float *a = l.filters;
float *b = l.col_image;
float *c = l.output;
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
c += n*m;
state.input += l.c*l.h*l.w;
}
if(l.batch_normalize){
forward_batchnorm_layer(l, state);
}
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
activate_array(l.output, m*n*l.batch, l.activation);
}
void backward_convolutional_layer(convolutional_layer l, network_state state)
{
int i;
int m = l.n;
int n = l.size*l.size*l.c;
int k = convolutional_out_height(l)*
convolutional_out_width(l);
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
for(i = 0; i < l.batch; ++i){
float *a = l.delta + i*m*k;
float *b = l.col_image;
float *c = l.filter_updates;
float *im = state.input+i*l.c*l.h*l.w;
im2col_cpu(im, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(state.delta){
a = l.filters;
b = l.delta + i*m*k;
c = l.col_image;
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
}
}
}
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
{
int size = l.size*l.size*l.c*l.n;
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.n, momentum, l.bias_updates, 1);
axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
scal_cpu(size, momentum, l.filter_updates, 1);
}
image get_convolutional_filter(convolutional_layer l, int i)
{
int h = l.size;
int w = l.size;
int c = l.c;
return float_to_image(w,h,c,l.filters+i*h*w*c);
}
void rgbgr_filters(convolutional_layer l)
{
int i;
for(i = 0; i < l.n; ++i){
image im = get_convolutional_filter(l, i);
if (im.c == 3) {
rgbgr_image(im);
}
}
}
void rescale_filters(convolutional_layer l, float scale, float trans)
{
int i;
for(i = 0; i < l.n; ++i){
image im = get_convolutional_filter(l, i);
if (im.c == 3) {
scale_image(im, scale);
float sum = sum_array(im.data, im.w*im.h*im.c);
l.biases[i] += sum*trans;
}
}
}
image *get_filters(convolutional_layer l)
{
image *filters = calloc(l.n, sizeof(image));
int i;
for(i = 0; i < l.n; ++i){
filters[i] = copy_image(get_convolutional_filter(l, i));
//normalize_image(filters[i]);
}
return filters;
}
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
{
image *single_filters = get_filters(l);
show_images(single_filters, l.n, window);
image delta = get_convolutional_image(l);
image dc = collapse_image_layers(delta, 1);
char buff[256];
sprintf(buff, "%s: Output", window);
//show_image(dc, buff);
//save_image(dc, buff);
free_image(dc);
return single_filters;
}