mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
107 lines
3.1 KiB
Plaintext
107 lines
3.1 KiB
Plaintext
#include "cuda_runtime.h"
|
|
#include "curand.h"
|
|
#include "cublas_v2.h"
|
|
|
|
extern "C" {
|
|
#include "maxpool_layer.h"
|
|
#include "cuda.h"
|
|
}
|
|
|
|
__global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, float *input, float *output, int *indexes)
|
|
{
|
|
int h = (in_h-1)/stride + 1;
|
|
int w = (in_w-1)/stride + 1;
|
|
int c = in_c;
|
|
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(id >= n) return;
|
|
|
|
int j = id % w;
|
|
id /= w;
|
|
int i = id % h;
|
|
id /= h;
|
|
int k = id % c;
|
|
id /= c;
|
|
int b = id;
|
|
|
|
int w_offset = (-size-1)/2 + 1;
|
|
int h_offset = (-size-1)/2 + 1;
|
|
|
|
int out_index = j + w*(i + h*(k + c*b));
|
|
float max = -INFINITY;
|
|
int max_i = -1;
|
|
int l, m;
|
|
for(l = 0; l < size; ++l){
|
|
for(m = 0; m < size; ++m){
|
|
int cur_h = h_offset + i*stride + l;
|
|
int cur_w = w_offset + j*stride + m;
|
|
int index = cur_w + in_w*(cur_h + in_h*(k + b*in_c));
|
|
int valid = (cur_h >= 0 && cur_h < in_h &&
|
|
cur_w >= 0 && cur_w < in_w);
|
|
float val = (valid != 0) ? input[index] : -INFINITY;
|
|
max_i = (val > max) ? index : max_i;
|
|
max = (val > max) ? val : max;
|
|
}
|
|
}
|
|
output[out_index] = max;
|
|
indexes[out_index] = max_i;
|
|
}
|
|
|
|
__global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, float *delta, float *prev_delta, int *indexes)
|
|
{
|
|
int h = (in_h-1)/stride + 1;
|
|
int w = (in_w-1)/stride + 1;
|
|
int c = in_c;
|
|
int area = (size-1)/stride;
|
|
|
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(id >= n) return;
|
|
|
|
int index = id;
|
|
int j = id % in_w;
|
|
id /= in_w;
|
|
int i = id % in_h;
|
|
id /= in_h;
|
|
int k = id % in_c;
|
|
id /= in_c;
|
|
int b = id;
|
|
|
|
int w_offset = (-size-1)/2 + 1;
|
|
int h_offset = (-size-1)/2 + 1;
|
|
|
|
float d = 0;
|
|
int l, m;
|
|
for(l = -area; l < area+1; ++l){
|
|
for(m = -area; m < area+1; ++m){
|
|
int out_w = (j-w_offset)/stride + m;
|
|
int out_h = (i-h_offset)/stride + l;
|
|
int out_index = out_w + w*(out_h + h*(k + c*b));
|
|
int valid = (out_w >= 0 && out_w < w &&
|
|
out_h >= 0 && out_h < h);
|
|
d += (valid && indexes[out_index] == index) ? delta[out_index] : 0;
|
|
}
|
|
}
|
|
prev_delta[index] += d;
|
|
}
|
|
|
|
extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
|
|
{
|
|
int h = (layer.h-1)/layer.stride + 1;
|
|
int w = (layer.w-1)/layer.stride + 1;
|
|
int c = layer.c;
|
|
|
|
size_t n = h*w*c*layer.batch;
|
|
|
|
forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, state.input, layer.output_gpu, layer.indexes_gpu);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
|
|
{
|
|
size_t n = layer.h*layer.w*layer.c*layer.batch;
|
|
|
|
backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, state.delta, layer.indexes_gpu);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|