darknet/src/network.c
2017-06-08 14:03:41 -07:00

635 lines
16 KiB
C

#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "blas.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
#include "parser.h"
#include "data.h"
load_args get_base_args(network net)
{
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.size = net.w;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.center = net.center;
args.saturation = net.saturation;
args.hue = net.hue;
return args;
}
network load_network(char *cfg, char *weights, int clear)
{
network net = parse_network_cfg(cfg);
if(weights && weights[0] != 0){
load_weights(&net, weights);
}
if(clear) *net.seen = 0;
return net;
}
network *load_network_p(char *cfg, char *weights, int clear)
{
network *net = calloc(1, sizeof(network));
*net = load_network(cfg, weights, clear);
return net;
}
int get_current_batch(network net)
{
int batch_num = (*net.seen)/(net.batch*net.subdivisions);
return batch_num;
}
void reset_momentum(network net)
{
if (net.momentum == 0) return;
net.learning_rate = 0;
net.momentum = 0;
net.decay = 0;
#ifdef GPU
//if(net.gpu_index >= 0) update_network_gpu(net);
#endif
}
float get_current_rate(network net)
{
int batch_num = get_current_batch(net);
int i;
float rate;
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
switch (net.policy) {
case CONSTANT:
return net.learning_rate;
case STEP:
return net.learning_rate * pow(net.scale, batch_num/net.step);
case STEPS:
rate = net.learning_rate;
for(i = 0; i < net.num_steps; ++i){
if(net.steps[i] > batch_num) return rate;
rate *= net.scales[i];
//if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
}
return rate;
case EXP:
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
case RANDOM:
return net.learning_rate * pow(rand_uniform(0,1), net.power);
case SIG:
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
default:
fprintf(stderr, "Policy is weird!\n");
return net.learning_rate;
}
}
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
case ACTIVE:
return "activation";
case LOCAL:
return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
case RNN:
return "rnn";
case GRU:
return "gru";
case LSTM:
return "lstm";
case CRNN:
return "crnn";
case MAXPOOL:
return "maxpool";
case REORG:
return "reorg";
case AVGPOOL:
return "avgpool";
case SOFTMAX:
return "softmax";
case DETECTION:
return "detection";
case REGION:
return "region";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
case ROUTE:
return "route";
case SHORTCUT:
return "shortcut";
case NORMALIZATION:
return "normalization";
case BATCHNORM:
return "batchnorm";
default:
break;
}
return "none";
}
network make_network(int n)
{
network net = {0};
net.n = n;
net.layers = calloc(net.n, sizeof(layer));
net.seen = calloc(1, sizeof(int));
net.cost = calloc(1, sizeof(float));
return net;
}
void forward_network(network net)
{
int i;
for(i = 0; i < net.n; ++i){
net.index = i;
layer l = net.layers[i];
if(l.delta){
fill_cpu(l.outputs * l.batch, 0, l.delta, 1);
}
l.forward(l, net);
net.input = l.output;
if(l.truth) {
net.truth = l.output;
}
}
calc_network_cost(net);
}
void update_network(network net)
{
int i;
int update_batch = net.batch*net.subdivisions;
float rate = get_current_rate(net);
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.update){
l.update(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay);
}
}
}
void calc_network_cost(network net)
{
int i;
float sum = 0;
int count = 0;
for(i = 0; i < net.n; ++i){
if(net.layers[i].cost){
sum += net.layers[i].cost[0];
++count;
}
}
*net.cost = sum/count;
}
int get_predicted_class_network(network net)
{
return max_index(net.output, net.outputs);
}
void backward_network(network net)
{
int i;
network orig = net;
for(i = net.n-1; i >= 0; --i){
layer l = net.layers[i];
if(l.stopbackward) break;
if(i == 0){
net = orig;
}else{
layer prev = net.layers[i-1];
net.input = prev.output;
net.delta = prev.delta;
}
net.index = i;
l.backward(l, net);
}
}
float train_network_datum(network net)
{
#ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net);
#endif
*net.seen += net.batch;
net.train = 1;
forward_network(net);
backward_network(net);
float error = *net.cost;
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
return error;
}
float train_network_sgd(network net, data d, int n)
{
int batch = net.batch;
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_random_batch(d, batch, net.input, net.truth);
float err = train_network_datum(net);
sum += err;
}
return (float)sum/(n*batch);
}
float train_network(network net, data d)
{
assert(d.X.rows % net.batch == 0);
int batch = net.batch;
int n = d.X.rows / batch;
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, net.input, net.truth);
float err = train_network_datum(net);
sum += err;
}
return (float)sum/(n*batch);
}
void set_batch_network(network *net, int b)
{
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].batch = b;
#ifdef CUDNN
if(net->layers[i].type == CONVOLUTIONAL){
cudnn_convolutional_setup(net->layers + i);
}
#endif
}
}
int resize_network(network *net, int w, int h)
{
#ifdef GPU
cuda_set_device(net->gpu_index);
cuda_free(net->workspace);
#endif
int i;
//if(w == net->w && h == net->h) return 0;
net->w = w;
net->h = h;
int inputs = 0;
size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...\n", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
}else if(l.type == CROP){
resize_crop_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else if(l.type == REGION){
resize_region_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if(l.type == REORG){
resize_reorg_layer(&l, w, h);
}else if(l.type == AVGPOOL){
resize_avgpool_layer(&l, w, h);
}else if(l.type == NORMALIZATION){
resize_normalization_layer(&l, w, h);
}else if(l.type == COST){
resize_cost_layer(&l, inputs);
}else{
error("Cannot resize this type of layer");
}
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
layer out = get_network_output_layer(*net);
net->inputs = net->layers[0].inputs;
net->outputs = out.outputs;
net->truths = out.outputs;
if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
net->output = out.output;
free(net->input);
free(net->truth);
net->input = calloc(net->inputs*net->batch, sizeof(float));
net->truth = calloc(net->truths*net->batch, sizeof(float));
#ifdef GPU
if(gpu_index >= 0){
cuda_free(net->input_gpu);
cuda_free(net->truth_gpu);
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
}else {
free(net->workspace);
net->workspace = calloc(1, workspace_size);
}
#else
free(net->workspace);
net->workspace = calloc(1, workspace_size);
#endif
//fprintf(stderr, " Done!\n");
return 0;
}
detection_layer get_network_detection_layer(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.layers[i].type == DETECTION){
return net.layers[i];
}
}
fprintf(stderr, "Detection layer not found!!\n");
detection_layer l = {0};
return l;
}
image get_network_image_layer(network net, int i)
{
layer l = net.layers[i];
#ifdef GPU
//cuda_pull_array(l.output_gpu, l.output, l.outputs);
#endif
if (l.out_w && l.out_h && l.out_c){
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
}
image def = {0};
return def;
}
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
image def = {0};
return def;
}
void visualize_network(network net)
{
image *prev = 0;
int i;
char buff[256];
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
prev = visualize_convolutional_layer(l, buff, prev);
}
}
}
void top_predictions(network net, int k, int *index)
{
top_k(net.output, net.outputs, k, index);
}
float *network_predict(network net, float *input)
{
#ifdef GPU
if(gpu_index >= 0) return network_predict_gpu(net, input);
#endif
net.input = input;
net.truth = 0;
net.train = 0;
net.delta = 0;
forward_network(net);
return net.output;
}
float *network_predict_p(network *net, float *input)
{
return network_predict(*net, input);
}
float *network_predict_image(network *net, image im)
{
image imr = letterbox_image(im, net->w, net->h);
set_batch_network(net, 1);
float *p = network_predict(*net, imr.data);
free_image(imr);
return p;
}
int network_width(network *net){return net->w;}
int network_height(network *net){return net->h;}
matrix network_predict_data_multi(network net, data test, int n)
{
int i,j,b,m;
int k = net.outputs;
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.rows, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
for(m = 0; m < n; ++m){
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] += out[j+b*k]/n;
}
}
}
}
free(X);
return pred;
}
matrix network_predict_data(network net, data test)
{
int i,j,b;
int k = net.outputs;
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
}
}
free(X);
return pred;
}
void print_network(network net)
{
int i,j;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
float *output = l.output;
int n = l.outputs;
float mean = mean_array(output, n);
float vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
if(n > 100) n = 100;
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
}
}
void compare_networks(network n1, network n2, data test)
{
matrix g1 = network_predict_data(n1, test);
matrix g2 = network_predict_data(n2, test);
int i;
int a,b,c,d;
a = b = c = d = 0;
for(i = 0; i < g1.rows; ++i){
int truth = max_index(test.y.vals[i], test.y.cols);
int p1 = max_index(g1.vals[i], g1.cols);
int p2 = max_index(g2.vals[i], g2.cols);
if(p1 == truth){
if(p2 == truth) ++d;
else ++c;
}else{
if(p2 == truth) ++b;
else ++a;
}
}
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
float num = pow((abs(b - c) - 1.), 2.);
float den = b + c;
printf("%f\n", num/den);
}
float network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
float *network_accuracies(network net, data d, int n)
{
static float acc[2];
matrix guess = network_predict_data(net, d);
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
acc[1] = matrix_topk_accuracy(d.y, guess, n);
free_matrix(guess);
return acc;
}
layer get_network_output_layer(network net)
{
int i;
for(i = net.n - 1; i >= 0; --i){
if(net.layers[i].type != COST) break;
}
return net.layers[i];
}
float network_accuracy_multi(network net, data d, int n)
{
matrix guess = network_predict_data_multi(net, d, n);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
void free_network(network net)
{
int i;
for(i = 0; i < net.n; ++i){
free_layer(net.layers[i]);
}
free(net.layers);
if(net.input) free(net.input);
if(net.truth) free(net.truth);
#ifdef GPU
if(net.input_gpu) cuda_free(net.input_gpu);
if(net.truth_gpu) cuda_free(net.truth_gpu);
#endif
}
// Some day...
layer network_output_layer(network net)
{
int i;
for(i = net.n - 1; i >= 0; --i){
if(net.layers[i].type != COST) break;
}
return net.layers[i];
}
int network_inputs(network net)
{
return net.layers[0].inputs;
}
int network_outputs(network net)
{
return network_output_layer(net).outputs;
}
float *network_output(network net)
{
return network_output_layer(net).output;
}