darknet/src/cost_layer.c
2015-09-23 14:16:48 -07:00

111 lines
2.8 KiB
C

#include "cost_layer.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
COST_TYPE get_cost_type(char *s)
{
if (strcmp(s, "sse")==0) return SSE;
if (strcmp(s, "masked")==0) return MASKED;
fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
return SSE;
}
char *get_cost_string(COST_TYPE a)
{
switch(a){
case SSE:
return "sse";
case MASKED:
return "masked";
}
return "sse";
}
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
{
fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
cost_layer l = {0};
l.type = COST;
l.scale = scale;
l.batch = batch;
l.inputs = inputs;
l.outputs = inputs;
l.cost_type = cost_type;
l.delta = calloc(inputs*batch, sizeof(float));
l.output = calloc(1, sizeof(float));
#ifdef GPU
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
}
void resize_cost_layer(cost_layer *l, int inputs)
{
l->inputs = inputs;
l->outputs = inputs;
l->delta = realloc(l->delta, inputs*l->batch*sizeof(float));
#ifdef GPU
cuda_free(l->delta_gpu);
l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
#endif
}
void forward_cost_layer(cost_layer l, network_state state)
{
if (!state.truth) return;
if(l.cost_type == MASKED){
int i;
for(i = 0; i < l.batch*l.inputs; ++i){
if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
}
}
copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
//printf("cost: %f\n", *l.output);
}
void backward_cost_layer(const cost_layer l, network_state state)
{
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
}
#ifdef GPU
void pull_cost_layer(cost_layer l)
{
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
void push_cost_layer(cost_layer l)
{
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
void forward_cost_layer_gpu(cost_layer l, network_state state)
{
if (!state.truth) return;
if (l.cost_type == MASKED) {
mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
}
copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
}
void backward_cost_layer_gpu(const cost_layer l, network_state state)
{
axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
}
#endif