mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
699 lines
21 KiB
C
699 lines
21 KiB
C
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "parser.h"
|
|
#include "activations.h"
|
|
#include "crop_layer.h"
|
|
#include "cost_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "normalization_layer.h"
|
|
#include "deconvolutional_layer.h"
|
|
#include "connected_layer.h"
|
|
#include "maxpool_layer.h"
|
|
#include "softmax_layer.h"
|
|
#include "dropout_layer.h"
|
|
#include "detection_layer.h"
|
|
#include "avgpool_layer.h"
|
|
#include "route_layer.h"
|
|
#include "list.h"
|
|
#include "option_list.h"
|
|
#include "utils.h"
|
|
|
|
typedef struct{
|
|
char *type;
|
|
list *options;
|
|
}section;
|
|
|
|
int is_network(section *s);
|
|
int is_convolutional(section *s);
|
|
int is_deconvolutional(section *s);
|
|
int is_connected(section *s);
|
|
int is_maxpool(section *s);
|
|
int is_avgpool(section *s);
|
|
int is_dropout(section *s);
|
|
int is_softmax(section *s);
|
|
int is_normalization(section *s);
|
|
int is_crop(section *s);
|
|
int is_cost(section *s);
|
|
int is_detection(section *s);
|
|
int is_route(section *s);
|
|
list *read_cfg(char *filename);
|
|
|
|
void free_section(section *s)
|
|
{
|
|
free(s->type);
|
|
node *n = s->options->front;
|
|
while(n){
|
|
kvp *pair = (kvp *)n->val;
|
|
free(pair->key);
|
|
free(pair);
|
|
node *next = n->next;
|
|
free(n);
|
|
n = next;
|
|
}
|
|
free(s->options);
|
|
free(s);
|
|
}
|
|
|
|
void parse_data(char *data, float *a, int n)
|
|
{
|
|
int i;
|
|
if(!data) return;
|
|
char *curr = data;
|
|
char *next = data;
|
|
int done = 0;
|
|
for(i = 0; i < n && !done; ++i){
|
|
while(*++next !='\0' && *next != ',');
|
|
if(*next == '\0') done = 1;
|
|
*next = '\0';
|
|
sscanf(curr, "%g", &a[i]);
|
|
curr = next+1;
|
|
}
|
|
}
|
|
|
|
typedef struct size_params{
|
|
int batch;
|
|
int inputs;
|
|
int h;
|
|
int w;
|
|
int c;
|
|
} size_params;
|
|
|
|
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
|
|
{
|
|
int n = option_find_int(options, "filters",1);
|
|
int size = option_find_int(options, "size",1);
|
|
int stride = option_find_int(options, "stride",1);
|
|
char *activation_s = option_find_str(options, "activation", "logistic");
|
|
ACTIVATION activation = get_activation(activation_s);
|
|
|
|
int batch,h,w,c;
|
|
h = params.h;
|
|
w = params.w;
|
|
c = params.c;
|
|
batch=params.batch;
|
|
if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
|
|
|
|
deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
|
|
|
|
char *weights = option_find_str(options, "weights", 0);
|
|
char *biases = option_find_str(options, "biases", 0);
|
|
parse_data(weights, layer.filters, c*n*size*size);
|
|
parse_data(biases, layer.biases, n);
|
|
#ifdef GPU
|
|
if(weights || biases) push_deconvolutional_layer(layer);
|
|
#endif
|
|
return layer;
|
|
}
|
|
|
|
convolutional_layer parse_convolutional(list *options, size_params params)
|
|
{
|
|
int n = option_find_int(options, "filters",1);
|
|
int size = option_find_int(options, "size",1);
|
|
int stride = option_find_int(options, "stride",1);
|
|
int pad = option_find_int(options, "pad",0);
|
|
char *activation_s = option_find_str(options, "activation", "logistic");
|
|
ACTIVATION activation = get_activation(activation_s);
|
|
|
|
int batch,h,w,c;
|
|
h = params.h;
|
|
w = params.w;
|
|
c = params.c;
|
|
batch=params.batch;
|
|
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
|
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
|
|
|
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
|
|
|
|
char *weights = option_find_str(options, "weights", 0);
|
|
char *biases = option_find_str(options, "biases", 0);
|
|
parse_data(weights, layer.filters, c*n*size*size);
|
|
parse_data(biases, layer.biases, n);
|
|
#ifdef GPU
|
|
if(weights || biases) push_convolutional_layer(layer);
|
|
#endif
|
|
return layer;
|
|
}
|
|
|
|
connected_layer parse_connected(list *options, size_params params)
|
|
{
|
|
int output = option_find_int(options, "output",1);
|
|
char *activation_s = option_find_str(options, "activation", "logistic");
|
|
ACTIVATION activation = get_activation(activation_s);
|
|
|
|
connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
|
|
|
|
char *weights = option_find_str(options, "weights", 0);
|
|
char *biases = option_find_str(options, "biases", 0);
|
|
parse_data(biases, layer.biases, output);
|
|
parse_data(weights, layer.weights, params.inputs*output);
|
|
#ifdef GPU
|
|
if(weights || biases) push_connected_layer(layer);
|
|
#endif
|
|
return layer;
|
|
}
|
|
|
|
softmax_layer parse_softmax(list *options, size_params params)
|
|
{
|
|
int groups = option_find_int(options, "groups",1);
|
|
softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
|
|
return layer;
|
|
}
|
|
|
|
detection_layer parse_detection(list *options, size_params params)
|
|
{
|
|
int coords = option_find_int(options, "coords", 1);
|
|
int classes = option_find_int(options, "classes", 1);
|
|
int rescore = option_find_int(options, "rescore", 0);
|
|
int num = option_find_int(options, "num", 1);
|
|
int side = option_find_int(options, "side", 7);
|
|
detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
|
|
|
|
layer.softmax = option_find_int(options, "softmax", 0);
|
|
layer.sqrt = option_find_int(options, "sqrt", 0);
|
|
|
|
layer.coord_scale = option_find_float(options, "coord_scale", 1);
|
|
layer.forced = option_find_int(options, "forced", 0);
|
|
layer.object_scale = option_find_float(options, "object_scale", 1);
|
|
layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
|
|
layer.class_scale = option_find_float(options, "class_scale", 1);
|
|
layer.jitter = option_find_float(options, "jitter", .2);
|
|
return layer;
|
|
}
|
|
|
|
cost_layer parse_cost(list *options, size_params params)
|
|
{
|
|
char *type_s = option_find_str(options, "type", "sse");
|
|
COST_TYPE type = get_cost_type(type_s);
|
|
float scale = option_find_float_quiet(options, "scale",1);
|
|
cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
|
|
return layer;
|
|
}
|
|
|
|
crop_layer parse_crop(list *options, size_params params)
|
|
{
|
|
int crop_height = option_find_int(options, "crop_height",1);
|
|
int crop_width = option_find_int(options, "crop_width",1);
|
|
int flip = option_find_int(options, "flip",0);
|
|
float angle = option_find_float(options, "angle",0);
|
|
float saturation = option_find_float(options, "saturation",1);
|
|
float exposure = option_find_float(options, "exposure",1);
|
|
|
|
int batch,h,w,c;
|
|
h = params.h;
|
|
w = params.w;
|
|
c = params.c;
|
|
batch=params.batch;
|
|
if(!(h && w && c)) error("Layer before crop layer must output image.");
|
|
|
|
int noadjust = option_find_int_quiet(options, "noadjust",0);
|
|
|
|
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
|
|
l.shift = option_find_float(options, "shift", 0);
|
|
l.noadjust = noadjust;
|
|
return l;
|
|
}
|
|
|
|
maxpool_layer parse_maxpool(list *options, size_params params)
|
|
{
|
|
int stride = option_find_int(options, "stride",1);
|
|
int size = option_find_int(options, "size",stride);
|
|
|
|
int batch,h,w,c;
|
|
h = params.h;
|
|
w = params.w;
|
|
c = params.c;
|
|
batch=params.batch;
|
|
if(!(h && w && c)) error("Layer before maxpool layer must output image.");
|
|
|
|
maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
|
|
return layer;
|
|
}
|
|
|
|
avgpool_layer parse_avgpool(list *options, size_params params)
|
|
{
|
|
int batch,w,h,c;
|
|
w = params.w;
|
|
h = params.h;
|
|
c = params.c;
|
|
batch=params.batch;
|
|
if(!(h && w && c)) error("Layer before avgpool layer must output image.");
|
|
|
|
avgpool_layer layer = make_avgpool_layer(batch,w,h,c);
|
|
return layer;
|
|
}
|
|
|
|
dropout_layer parse_dropout(list *options, size_params params)
|
|
{
|
|
float probability = option_find_float(options, "probability", .5);
|
|
dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
|
|
layer.out_w = params.w;
|
|
layer.out_h = params.h;
|
|
layer.out_c = params.c;
|
|
return layer;
|
|
}
|
|
|
|
layer parse_normalization(list *options, size_params params)
|
|
{
|
|
float alpha = option_find_float(options, "alpha", .0001);
|
|
float beta = option_find_float(options, "beta" , .75);
|
|
float kappa = option_find_float(options, "kappa", 1);
|
|
int size = option_find_int(options, "size", 5);
|
|
layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa);
|
|
return l;
|
|
}
|
|
|
|
route_layer parse_route(list *options, size_params params, network net)
|
|
{
|
|
char *l = option_find(options, "layers");
|
|
int len = strlen(l);
|
|
if(!l) error("Route Layer must specify input layers");
|
|
int n = 1;
|
|
int i;
|
|
for(i = 0; i < len; ++i){
|
|
if (l[i] == ',') ++n;
|
|
}
|
|
|
|
int *layers = calloc(n, sizeof(int));
|
|
int *sizes = calloc(n, sizeof(int));
|
|
for(i = 0; i < n; ++i){
|
|
int index = atoi(l);
|
|
l = strchr(l, ',')+1;
|
|
layers[i] = index;
|
|
sizes[i] = net.layers[index].outputs;
|
|
}
|
|
int batch = params.batch;
|
|
|
|
route_layer layer = make_route_layer(batch, n, layers, sizes);
|
|
|
|
convolutional_layer first = net.layers[layers[0]];
|
|
layer.out_w = first.out_w;
|
|
layer.out_h = first.out_h;
|
|
layer.out_c = first.out_c;
|
|
for(i = 1; i < n; ++i){
|
|
int index = layers[i];
|
|
convolutional_layer next = net.layers[index];
|
|
if(next.out_w == first.out_w && next.out_h == first.out_h){
|
|
layer.out_c += next.out_c;
|
|
}else{
|
|
layer.out_h = layer.out_w = layer.out_c = 0;
|
|
}
|
|
}
|
|
|
|
return layer;
|
|
}
|
|
|
|
learning_rate_policy get_policy(char *s)
|
|
{
|
|
if (strcmp(s, "poly")==0) return POLY;
|
|
if (strcmp(s, "constant")==0) return CONSTANT;
|
|
if (strcmp(s, "step")==0) return STEP;
|
|
if (strcmp(s, "exp")==0) return EXP;
|
|
if (strcmp(s, "sigmoid")==0) return SIG;
|
|
if (strcmp(s, "steps")==0) return STEPS;
|
|
fprintf(stderr, "Couldn't find policy %s, going with constant\n", s);
|
|
return CONSTANT;
|
|
}
|
|
|
|
void parse_net_options(list *options, network *net)
|
|
{
|
|
net->batch = option_find_int(options, "batch",1);
|
|
net->learning_rate = option_find_float(options, "learning_rate", .001);
|
|
net->momentum = option_find_float(options, "momentum", .9);
|
|
net->decay = option_find_float(options, "decay", .0001);
|
|
int subdivs = option_find_int(options, "subdivisions",1);
|
|
net->batch /= subdivs;
|
|
net->subdivisions = subdivs;
|
|
|
|
net->h = option_find_int_quiet(options, "height",0);
|
|
net->w = option_find_int_quiet(options, "width",0);
|
|
net->c = option_find_int_quiet(options, "channels",0);
|
|
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
|
|
|
|
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
|
|
|
|
char *policy_s = option_find_str(options, "policy", "constant");
|
|
net->policy = get_policy(policy_s);
|
|
if(net->policy == STEP){
|
|
net->step = option_find_int(options, "step", 1);
|
|
net->scale = option_find_float(options, "scale", 1);
|
|
} else if (net->policy == STEPS){
|
|
char *l = option_find(options, "steps");
|
|
char *p = option_find(options, "scales");
|
|
if(!l || !p) error("STEPS policy must have steps and scales in cfg file");
|
|
|
|
int len = strlen(l);
|
|
int n = 1;
|
|
int i;
|
|
for(i = 0; i < len; ++i){
|
|
if (l[i] == ',') ++n;
|
|
}
|
|
int *steps = calloc(n, sizeof(int));
|
|
float *scales = calloc(n, sizeof(float));
|
|
for(i = 0; i < n; ++i){
|
|
int step = atoi(l);
|
|
float scale = atof(p);
|
|
l = strchr(l, ',')+1;
|
|
p = strchr(p, ',')+1;
|
|
steps[i] = step;
|
|
scales[i] = scale;
|
|
}
|
|
net->scales = scales;
|
|
net->steps = steps;
|
|
net->num_steps = n;
|
|
} else if (net->policy == EXP){
|
|
net->gamma = option_find_float(options, "gamma", 1);
|
|
} else if (net->policy == SIG){
|
|
net->gamma = option_find_float(options, "gamma", 1);
|
|
net->step = option_find_int(options, "step", 1);
|
|
} else if (net->policy == POLY){
|
|
net->power = option_find_float(options, "power", 1);
|
|
}
|
|
net->max_batches = option_find_int(options, "max_batches", 0);
|
|
}
|
|
|
|
network parse_network_cfg(char *filename)
|
|
{
|
|
list *sections = read_cfg(filename);
|
|
node *n = sections->front;
|
|
if(!n) error("Config file has no sections");
|
|
network net = make_network(sections->size - 1);
|
|
size_params params;
|
|
|
|
section *s = (section *)n->val;
|
|
list *options = s->options;
|
|
if(!is_network(s)) error("First section must be [net] or [network]");
|
|
parse_net_options(options, &net);
|
|
|
|
params.h = net.h;
|
|
params.w = net.w;
|
|
params.c = net.c;
|
|
params.inputs = net.inputs;
|
|
params.batch = net.batch;
|
|
|
|
n = n->next;
|
|
int count = 0;
|
|
free_section(s);
|
|
while(n){
|
|
fprintf(stderr, "%d: ", count);
|
|
s = (section *)n->val;
|
|
options = s->options;
|
|
layer l = {0};
|
|
if(is_convolutional(s)){
|
|
l = parse_convolutional(options, params);
|
|
}else if(is_deconvolutional(s)){
|
|
l = parse_deconvolutional(options, params);
|
|
}else if(is_connected(s)){
|
|
l = parse_connected(options, params);
|
|
}else if(is_crop(s)){
|
|
l = parse_crop(options, params);
|
|
}else if(is_cost(s)){
|
|
l = parse_cost(options, params);
|
|
}else if(is_detection(s)){
|
|
l = parse_detection(options, params);
|
|
}else if(is_softmax(s)){
|
|
l = parse_softmax(options, params);
|
|
}else if(is_normalization(s)){
|
|
l = parse_normalization(options, params);
|
|
}else if(is_maxpool(s)){
|
|
l = parse_maxpool(options, params);
|
|
}else if(is_avgpool(s)){
|
|
l = parse_avgpool(options, params);
|
|
}else if(is_route(s)){
|
|
l = parse_route(options, params, net);
|
|
}else if(is_dropout(s)){
|
|
l = parse_dropout(options, params);
|
|
l.output = net.layers[count-1].output;
|
|
l.delta = net.layers[count-1].delta;
|
|
#ifdef GPU
|
|
l.output_gpu = net.layers[count-1].output_gpu;
|
|
l.delta_gpu = net.layers[count-1].delta_gpu;
|
|
#endif
|
|
}else{
|
|
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
|
}
|
|
l.dontload = option_find_int_quiet(options, "dontload", 0);
|
|
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
|
|
option_unused(options);
|
|
net.layers[count] = l;
|
|
free_section(s);
|
|
n = n->next;
|
|
if(n){
|
|
params.h = l.out_h;
|
|
params.w = l.out_w;
|
|
params.c = l.out_c;
|
|
params.inputs = l.outputs;
|
|
}
|
|
++count;
|
|
}
|
|
free_list(sections);
|
|
net.outputs = get_network_output_size(net);
|
|
net.output = get_network_output(net);
|
|
return net;
|
|
}
|
|
|
|
int is_crop(section *s)
|
|
{
|
|
return (strcmp(s->type, "[crop]")==0);
|
|
}
|
|
int is_cost(section *s)
|
|
{
|
|
return (strcmp(s->type, "[cost]")==0);
|
|
}
|
|
int is_detection(section *s)
|
|
{
|
|
return (strcmp(s->type, "[detection]")==0);
|
|
}
|
|
int is_deconvolutional(section *s)
|
|
{
|
|
return (strcmp(s->type, "[deconv]")==0
|
|
|| strcmp(s->type, "[deconvolutional]")==0);
|
|
}
|
|
int is_convolutional(section *s)
|
|
{
|
|
return (strcmp(s->type, "[conv]")==0
|
|
|| strcmp(s->type, "[convolutional]")==0);
|
|
}
|
|
int is_network(section *s)
|
|
{
|
|
return (strcmp(s->type, "[net]")==0
|
|
|| strcmp(s->type, "[network]")==0);
|
|
}
|
|
int is_connected(section *s)
|
|
{
|
|
return (strcmp(s->type, "[conn]")==0
|
|
|| strcmp(s->type, "[connected]")==0);
|
|
}
|
|
int is_maxpool(section *s)
|
|
{
|
|
return (strcmp(s->type, "[max]")==0
|
|
|| strcmp(s->type, "[maxpool]")==0);
|
|
}
|
|
int is_avgpool(section *s)
|
|
{
|
|
return (strcmp(s->type, "[avg]")==0
|
|
|| strcmp(s->type, "[avgpool]")==0);
|
|
}
|
|
int is_dropout(section *s)
|
|
{
|
|
return (strcmp(s->type, "[dropout]")==0);
|
|
}
|
|
|
|
int is_normalization(section *s)
|
|
{
|
|
return (strcmp(s->type, "[lrn]")==0
|
|
|| strcmp(s->type, "[normalization]")==0);
|
|
}
|
|
|
|
int is_softmax(section *s)
|
|
{
|
|
return (strcmp(s->type, "[soft]")==0
|
|
|| strcmp(s->type, "[softmax]")==0);
|
|
}
|
|
int is_route(section *s)
|
|
{
|
|
return (strcmp(s->type, "[route]")==0);
|
|
}
|
|
|
|
list *read_cfg(char *filename)
|
|
{
|
|
FILE *file = fopen(filename, "r");
|
|
if(file == 0) file_error(filename);
|
|
char *line;
|
|
int nu = 0;
|
|
list *sections = make_list();
|
|
section *current = 0;
|
|
while((line=fgetl(file)) != 0){
|
|
++ nu;
|
|
strip(line);
|
|
switch(line[0]){
|
|
case '[':
|
|
current = malloc(sizeof(section));
|
|
list_insert(sections, current);
|
|
current->options = make_list();
|
|
current->type = line;
|
|
break;
|
|
case '\0':
|
|
case '#':
|
|
case ';':
|
|
free(line);
|
|
break;
|
|
default:
|
|
if(!read_option(line, current->options)){
|
|
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
|
|
free(line);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
fclose(file);
|
|
return sections;
|
|
}
|
|
|
|
void save_weights_double(network net, char *filename)
|
|
{
|
|
fprintf(stderr, "Saving doubled weights to %s\n", filename);
|
|
FILE *fp = fopen(filename, "w");
|
|
if(!fp) file_error(filename);
|
|
|
|
fwrite(&net.learning_rate, sizeof(float), 1, fp);
|
|
fwrite(&net.momentum, sizeof(float), 1, fp);
|
|
fwrite(&net.decay, sizeof(float), 1, fp);
|
|
fwrite(net.seen, sizeof(int), 1, fp);
|
|
|
|
int i,j,k;
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
pull_convolutional_layer(l);
|
|
}
|
|
#endif
|
|
float zero = 0;
|
|
fwrite(l.biases, sizeof(float), l.n, fp);
|
|
fwrite(l.biases, sizeof(float), l.n, fp);
|
|
|
|
for (j = 0; j < l.n; ++j){
|
|
int index = j*l.c*l.size*l.size;
|
|
fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
|
|
for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
|
|
}
|
|
for (j = 0; j < l.n; ++j){
|
|
int index = j*l.c*l.size*l.size;
|
|
for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
|
|
fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
void save_weights_upto(network net, char *filename, int cutoff)
|
|
{
|
|
fprintf(stderr, "Saving weights to %s\n", filename);
|
|
FILE *fp = fopen(filename, "w");
|
|
if(!fp) file_error(filename);
|
|
|
|
fwrite(&net.learning_rate, sizeof(float), 1, fp);
|
|
fwrite(&net.momentum, sizeof(float), 1, fp);
|
|
fwrite(&net.decay, sizeof(float), 1, fp);
|
|
fwrite(net.seen, sizeof(int), 1, fp);
|
|
|
|
int i;
|
|
for(i = 0; i < net.n && i < cutoff; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
pull_convolutional_layer(l);
|
|
}
|
|
#endif
|
|
int num = l.n*l.c*l.size*l.size;
|
|
fwrite(l.biases, sizeof(float), l.n, fp);
|
|
if (l.batch_normalize){
|
|
fwrite(l.scales, sizeof(float), l.n, fp);
|
|
fwrite(l.rolling_mean, sizeof(float), l.n, fp);
|
|
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
|
|
}
|
|
fwrite(l.filters, sizeof(float), num, fp);
|
|
} if(l.type == CONNECTED){
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
pull_connected_layer(l);
|
|
}
|
|
#endif
|
|
fwrite(l.biases, sizeof(float), l.outputs, fp);
|
|
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
void save_weights(network net, char *filename)
|
|
{
|
|
save_weights_upto(net, filename, net.n);
|
|
}
|
|
|
|
void load_weights_upto(network *net, char *filename, int cutoff)
|
|
{
|
|
fprintf(stderr, "Loading weights from %s...", filename);
|
|
fflush(stdout);
|
|
FILE *fp = fopen(filename, "r");
|
|
if(!fp) file_error(filename);
|
|
|
|
float garbage;
|
|
fread(&garbage, sizeof(float), 1, fp);
|
|
fread(&garbage, sizeof(float), 1, fp);
|
|
fread(&garbage, sizeof(float), 1, fp);
|
|
fread(net->seen, sizeof(int), 1, fp);
|
|
|
|
int i;
|
|
for(i = 0; i < net->n && i < cutoff; ++i){
|
|
layer l = net->layers[i];
|
|
if (l.dontload) continue;
|
|
if(l.type == CONVOLUTIONAL){
|
|
int num = l.n*l.c*l.size*l.size;
|
|
fread(l.biases, sizeof(float), l.n, fp);
|
|
if (l.batch_normalize && (!l.dontloadscales)){
|
|
fread(l.scales, sizeof(float), l.n, fp);
|
|
fread(l.rolling_mean, sizeof(float), l.n, fp);
|
|
fread(l.rolling_variance, sizeof(float), l.n, fp);
|
|
}
|
|
fread(l.filters, sizeof(float), num, fp);
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
push_convolutional_layer(l);
|
|
}
|
|
#endif
|
|
}
|
|
if(l.type == DECONVOLUTIONAL){
|
|
int num = l.n*l.c*l.size*l.size;
|
|
fread(l.biases, sizeof(float), l.n, fp);
|
|
fread(l.filters, sizeof(float), num, fp);
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
push_deconvolutional_layer(l);
|
|
}
|
|
#endif
|
|
}
|
|
if(l.type == CONNECTED){
|
|
fread(l.biases, sizeof(float), l.outputs, fp);
|
|
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
push_connected_layer(l);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
fprintf(stderr, "Done!\n");
|
|
fclose(fp);
|
|
}
|
|
|
|
void load_weights(network *net, char *filename)
|
|
{
|
|
load_weights_upto(net, filename, net->n);
|
|
}
|
|
|