darknet/src/network.c
2013-12-10 10:30:42 -08:00

339 lines
10 KiB
C

#include <stdio.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "softmax_layer.h"
network make_network(int n)
{
network net;
net.n = n;
net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE));
net.outputs = 0;
net.output = 0;
return net;
}
void forward_network(network net, double *input)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer(layer, input);
input = layer.output;
}
}
}
void update_network(network net, double step, double momentum, double decay)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer, step, momentum, decay);
}
else if(net.types[i] == MAXPOOL){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
else if(net.types[i] == SOFTMAX){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer(layer, step, momentum, 0);
}
}
}
double *get_network_output_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
}
return 0;
}
double *get_network_output(network net)
{
return get_network_output_layer(net, net.n-1);
}
double *get_network_delta_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
}
return 0;
}
double *get_network_delta(network net)
{
return get_network_delta_layer(net, net.n-1);
}
void calculate_error_network(network net, double *truth)
{
double *delta = get_network_delta(net);
double *out = get_network_output(net);
int i, k = get_network_output_size(net);
for(i = 0; i < k; ++i){
delta[i] = truth[i] - out[i];
}
}
int get_predicted_class_network(network net)
{
double *out = get_network_output(net);
int k = get_network_output_size(net);
return max_index(out, k);
}
void backward_network(network net, double *input, double *truth)
{
calculate_error_network(net, truth);
int i;
double *prev_input;
double *prev_delta;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
learn_convolutional_layer(layer, prev_input);
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
learn_connected_layer(layer, prev_input);
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
}
}
}
int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
{
forward_network(net, x);
int class = get_predicted_class_network(net);
backward_network(net, x, y);
update_network(net, step, momentum, decay);
return (y[class]?1:0);
}
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
{
int i;
int correct = 0;
for(i = 0; i < n; ++i){
int index = rand()%d.X.rows;
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
//if((i+1)%10 == 0){
// printf("%d: %f\n", (i+1), (double)correct/(i+1));
//}
}
return (double)correct/n;
}
void train_network(network net, data d, double step, double momentum, double decay)
{
int i;
int correct = 0;
for(i = 0; i < d.X.rows; ++i){
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
if(i%100 == 0){
visualize_network(net);
cvWaitKey(10);
}
}
visualize_network(net);
cvWaitKey(100);
printf("Accuracy: %f\n", (double)correct/d.X.rows);
}
int get_network_output_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
image output = get_maxpool_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
return 0;
}
int get_network_output_size(network net)
{
int i = net.n-1;
return get_network_output_size_layer(net, i);
}
image get_network_image_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return get_convolutional_image(layer);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return get_maxpool_image(layer);
}
return make_empty_image(0,0,0);
}
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
return make_empty_image(0,0,0);
}
void visualize_network(network net)
{
int i;
char buff[256];
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
visualize_convolutional_filters(layer, buff);
}
}
}
double *network_predict(network net, double *input)
{
forward_network(net, input);
double *out = get_network_output(net);
return out;
}
matrix network_predict_data(network net, data test)
{
int i,j;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
for(i = 0; i < test.X.rows; ++i){
double *out = network_predict(net, test.X.vals[i]);
for(j = 0; j < k; ++j){
pred.vals[i][j] = out[j];
}
}
return pred;
}
void print_network(network net)
{
int i,j;
for(i = 0; i < net.n; ++i){
double *output = 0;
int n = 0;
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
output = layer.output;
image m = get_convolutional_image(layer);
n = m.h*m.w*m.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
output = layer.output;
image m = get_maxpool_image(layer);
n = m.h*m.w*m.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
output = layer.output;
n = layer.outputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
output = layer.output;
n = layer.inputs;
}
double mean = mean_array(output, n);
double vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
if(n > 100) n = 100;
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
}
}
double network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
double acc = matrix_accuracy(d.y, guess);
free_matrix(guess);
return acc;
}