mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
339 lines
10 KiB
C
339 lines
10 KiB
C
#include <stdio.h>
|
|
#include "network.h"
|
|
#include "image.h"
|
|
#include "data.h"
|
|
#include "utils.h"
|
|
|
|
#include "connected_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "maxpool_layer.h"
|
|
#include "softmax_layer.h"
|
|
|
|
network make_network(int n)
|
|
{
|
|
network net;
|
|
net.n = n;
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
|
net.outputs = 0;
|
|
net.output = 0;
|
|
return net;
|
|
}
|
|
|
|
void forward_network(network net, double *input)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
forward_convolutional_layer(layer, input);
|
|
input = layer.output;
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
forward_connected_layer(layer, input);
|
|
input = layer.output;
|
|
}
|
|
else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
forward_softmax_layer(layer, input);
|
|
input = layer.output;
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
forward_maxpool_layer(layer, input);
|
|
input = layer.output;
|
|
}
|
|
}
|
|
}
|
|
|
|
void update_network(network net, double step, double momentum, double decay)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
update_convolutional_layer(layer, step, momentum, decay);
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
}
|
|
else if(net.types[i] == SOFTMAX){
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
update_connected_layer(layer, step, momentum, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
double *get_network_output_layer(network net, int i)
|
|
{
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
return layer.output;
|
|
} else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
return layer.output;
|
|
} else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
return layer.output;
|
|
} else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
return layer.output;
|
|
}
|
|
return 0;
|
|
}
|
|
double *get_network_output(network net)
|
|
{
|
|
return get_network_output_layer(net, net.n-1);
|
|
}
|
|
|
|
double *get_network_delta_layer(network net, int i)
|
|
{
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
return layer.delta;
|
|
} else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
return layer.delta;
|
|
} else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
return layer.delta;
|
|
} else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
return layer.delta;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
double *get_network_delta(network net)
|
|
{
|
|
return get_network_delta_layer(net, net.n-1);
|
|
}
|
|
|
|
void calculate_error_network(network net, double *truth)
|
|
{
|
|
double *delta = get_network_delta(net);
|
|
double *out = get_network_output(net);
|
|
int i, k = get_network_output_size(net);
|
|
for(i = 0; i < k; ++i){
|
|
delta[i] = truth[i] - out[i];
|
|
}
|
|
}
|
|
|
|
int get_predicted_class_network(network net)
|
|
{
|
|
double *out = get_network_output(net);
|
|
int k = get_network_output_size(net);
|
|
return max_index(out, k);
|
|
}
|
|
|
|
void backward_network(network net, double *input, double *truth)
|
|
{
|
|
calculate_error_network(net, truth);
|
|
int i;
|
|
double *prev_input;
|
|
double *prev_delta;
|
|
for(i = net.n-1; i >= 0; --i){
|
|
if(i == 0){
|
|
prev_input = input;
|
|
prev_delta = 0;
|
|
}else{
|
|
prev_input = get_network_output_layer(net, i-1);
|
|
prev_delta = get_network_delta_layer(net, i-1);
|
|
}
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
learn_convolutional_layer(layer, prev_input);
|
|
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
|
|
}
|
|
else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
learn_connected_layer(layer, prev_input);
|
|
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
|
|
}
|
|
}
|
|
}
|
|
|
|
int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
|
|
{
|
|
forward_network(net, x);
|
|
int class = get_predicted_class_network(net);
|
|
backward_network(net, x, y);
|
|
update_network(net, step, momentum, decay);
|
|
return (y[class]?1:0);
|
|
}
|
|
|
|
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
|
|
{
|
|
int i;
|
|
int correct = 0;
|
|
for(i = 0; i < n; ++i){
|
|
int index = rand()%d.X.rows;
|
|
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
|
//if((i+1)%10 == 0){
|
|
// printf("%d: %f\n", (i+1), (double)correct/(i+1));
|
|
//}
|
|
}
|
|
return (double)correct/n;
|
|
}
|
|
|
|
void train_network(network net, data d, double step, double momentum, double decay)
|
|
{
|
|
int i;
|
|
int correct = 0;
|
|
for(i = 0; i < d.X.rows; ++i){
|
|
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
|
|
if(i%100 == 0){
|
|
visualize_network(net);
|
|
cvWaitKey(10);
|
|
}
|
|
}
|
|
visualize_network(net);
|
|
cvWaitKey(100);
|
|
printf("Accuracy: %f\n", (double)correct/d.X.rows);
|
|
}
|
|
|
|
int get_network_output_size_layer(network net, int i)
|
|
{
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
image output = get_convolutional_image(layer);
|
|
return output.h*output.w*output.c;
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
image output = get_maxpool_image(layer);
|
|
return output.h*output.w*output.c;
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
return layer.outputs;
|
|
}
|
|
else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
return layer.inputs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int get_network_output_size(network net)
|
|
{
|
|
int i = net.n-1;
|
|
return get_network_output_size_layer(net, i);
|
|
}
|
|
|
|
image get_network_image_layer(network net, int i)
|
|
{
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
return get_convolutional_image(layer);
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
return get_maxpool_image(layer);
|
|
}
|
|
return make_empty_image(0,0,0);
|
|
}
|
|
|
|
image get_network_image(network net)
|
|
{
|
|
int i;
|
|
for(i = net.n-1; i >= 0; --i){
|
|
image m = get_network_image_layer(net, i);
|
|
if(m.h != 0) return m;
|
|
}
|
|
return make_empty_image(0,0,0);
|
|
}
|
|
|
|
void visualize_network(network net)
|
|
{
|
|
int i;
|
|
char buff[256];
|
|
for(i = 0; i < net.n; ++i){
|
|
sprintf(buff, "Layer %d", i);
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
visualize_convolutional_filters(layer, buff);
|
|
}
|
|
}
|
|
}
|
|
|
|
double *network_predict(network net, double *input)
|
|
{
|
|
forward_network(net, input);
|
|
double *out = get_network_output(net);
|
|
return out;
|
|
}
|
|
|
|
matrix network_predict_data(network net, data test)
|
|
{
|
|
int i,j;
|
|
int k = get_network_output_size(net);
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
for(i = 0; i < test.X.rows; ++i){
|
|
double *out = network_predict(net, test.X.vals[i]);
|
|
for(j = 0; j < k; ++j){
|
|
pred.vals[i][j] = out[j];
|
|
}
|
|
}
|
|
return pred;
|
|
}
|
|
|
|
void print_network(network net)
|
|
{
|
|
int i,j;
|
|
for(i = 0; i < net.n; ++i){
|
|
double *output = 0;
|
|
int n = 0;
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
output = layer.output;
|
|
image m = get_convolutional_image(layer);
|
|
n = m.h*m.w*m.c;
|
|
}
|
|
else if(net.types[i] == MAXPOOL){
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
output = layer.output;
|
|
image m = get_maxpool_image(layer);
|
|
n = m.h*m.w*m.c;
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
output = layer.output;
|
|
n = layer.outputs;
|
|
}
|
|
else if(net.types[i] == SOFTMAX){
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
|
output = layer.output;
|
|
n = layer.inputs;
|
|
}
|
|
double mean = mean_array(output, n);
|
|
double vari = variance_array(output, n);
|
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
|
if(n > 100) n = 100;
|
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
|
if(n == 100)fprintf(stderr,".....\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
double network_accuracy(network net, data d)
|
|
{
|
|
matrix guess = network_predict_data(net, d);
|
|
double acc = matrix_accuracy(d.y, guess);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|