mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
504 lines
18 KiB
C
504 lines
18 KiB
C
#include "darknet.h"
|
|
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
|
|
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
|
|
extern void run_yolo(int argc, char **argv);
|
|
extern void run_detector(int argc, char **argv);
|
|
extern void run_coco(int argc, char **argv);
|
|
extern void run_nightmare(int argc, char **argv);
|
|
extern void run_classifier(int argc, char **argv);
|
|
extern void run_regressor(int argc, char **argv);
|
|
extern void run_segmenter(int argc, char **argv);
|
|
extern void run_isegmenter(int argc, char **argv);
|
|
extern void run_char_rnn(int argc, char **argv);
|
|
extern void run_tag(int argc, char **argv);
|
|
extern void run_cifar(int argc, char **argv);
|
|
extern void run_go(int argc, char **argv);
|
|
extern void run_art(int argc, char **argv);
|
|
extern void run_super(int argc, char **argv);
|
|
extern void run_lsd(int argc, char **argv);
|
|
|
|
void average(int argc, char *argv[])
|
|
{
|
|
char *cfgfile = argv[2];
|
|
char *outfile = argv[3];
|
|
gpu_index = -1;
|
|
network *net = parse_network_cfg(cfgfile);
|
|
network *sum = parse_network_cfg(cfgfile);
|
|
|
|
char *weightfile = argv[4];
|
|
load_weights(sum, weightfile);
|
|
|
|
int i, j;
|
|
int n = argc - 5;
|
|
for(i = 0; i < n; ++i){
|
|
weightfile = argv[i+5];
|
|
load_weights(net, weightfile);
|
|
for(j = 0; j < net->n; ++j){
|
|
layer l = net->layers[j];
|
|
layer out = sum->layers[j];
|
|
if(l.type == CONVOLUTIONAL){
|
|
int num = l.n*l.c*l.size*l.size;
|
|
axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
|
|
axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
|
|
if(l.batch_normalize){
|
|
axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
|
|
axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
|
|
axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
|
|
}
|
|
}
|
|
if(l.type == CONNECTED){
|
|
axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
|
|
axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
|
|
}
|
|
}
|
|
}
|
|
n = n+1;
|
|
for(j = 0; j < net->n; ++j){
|
|
layer l = sum->layers[j];
|
|
if(l.type == CONVOLUTIONAL){
|
|
int num = l.n*l.c*l.size*l.size;
|
|
scal_cpu(l.n, 1./n, l.biases, 1);
|
|
scal_cpu(num, 1./n, l.weights, 1);
|
|
if(l.batch_normalize){
|
|
scal_cpu(l.n, 1./n, l.scales, 1);
|
|
scal_cpu(l.n, 1./n, l.rolling_mean, 1);
|
|
scal_cpu(l.n, 1./n, l.rolling_variance, 1);
|
|
}
|
|
}
|
|
if(l.type == CONNECTED){
|
|
scal_cpu(l.outputs, 1./n, l.biases, 1);
|
|
scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
|
|
}
|
|
}
|
|
save_weights(sum, outfile);
|
|
}
|
|
|
|
long numops(network *net)
|
|
{
|
|
int i;
|
|
long ops = 0;
|
|
for(i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
|
|
} else if(l.type == CONNECTED){
|
|
ops += 2l * l.inputs * l.outputs;
|
|
} else if (l.type == RNN){
|
|
ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
|
|
ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
|
|
ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
|
|
} else if (l.type == GRU){
|
|
ops += 2l * l.uz->inputs * l.uz->outputs;
|
|
ops += 2l * l.uh->inputs * l.uh->outputs;
|
|
ops += 2l * l.ur->inputs * l.ur->outputs;
|
|
ops += 2l * l.wz->inputs * l.wz->outputs;
|
|
ops += 2l * l.wh->inputs * l.wh->outputs;
|
|
ops += 2l * l.wr->inputs * l.wr->outputs;
|
|
} else if (l.type == LSTM){
|
|
ops += 2l * l.uf->inputs * l.uf->outputs;
|
|
ops += 2l * l.ui->inputs * l.ui->outputs;
|
|
ops += 2l * l.ug->inputs * l.ug->outputs;
|
|
ops += 2l * l.uo->inputs * l.uo->outputs;
|
|
ops += 2l * l.wf->inputs * l.wf->outputs;
|
|
ops += 2l * l.wi->inputs * l.wi->outputs;
|
|
ops += 2l * l.wg->inputs * l.wg->outputs;
|
|
ops += 2l * l.wo->inputs * l.wo->outputs;
|
|
}
|
|
}
|
|
return ops;
|
|
}
|
|
|
|
void speed(char *cfgfile, int tics)
|
|
{
|
|
if (tics == 0) tics = 1000;
|
|
network *net = parse_network_cfg(cfgfile);
|
|
set_batch_network(net, 1);
|
|
int i;
|
|
double time=what_time_is_it_now();
|
|
image im = make_image(net->w, net->h, net->c*net->batch);
|
|
for(i = 0; i < tics; ++i){
|
|
network_predict(net, im.data);
|
|
}
|
|
double t = what_time_is_it_now() - time;
|
|
long ops = numops(net);
|
|
printf("\n%d evals, %f Seconds\n", tics, t);
|
|
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
|
|
printf("FLOPS: %.2f Bn\n", (float)ops/1000000000.*tics/t);
|
|
printf("Speed: %f sec/eval\n", t/tics);
|
|
printf("Speed: %f Hz\n", tics/t);
|
|
}
|
|
|
|
void operations(char *cfgfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = parse_network_cfg(cfgfile);
|
|
long ops = numops(net);
|
|
printf("Floating Point Operations: %ld\n", ops);
|
|
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
|
|
}
|
|
|
|
void oneoff(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = parse_network_cfg(cfgfile);
|
|
int oldn = net->layers[net->n - 2].n;
|
|
int c = net->layers[net->n - 2].c;
|
|
scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
|
|
scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
|
|
net->layers[net->n - 2].n = 11921;
|
|
net->layers[net->n - 2].biases += 5;
|
|
net->layers[net->n - 2].weights += 5*c;
|
|
if(weightfile){
|
|
load_weights(net, weightfile);
|
|
}
|
|
net->layers[net->n - 2].biases -= 5;
|
|
net->layers[net->n - 2].weights -= 5*c;
|
|
net->layers[net->n - 2].n = oldn;
|
|
printf("%d\n", oldn);
|
|
layer l = net->layers[net->n - 2];
|
|
copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1);
|
|
copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
|
|
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1);
|
|
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
|
|
*net->seen = 0;
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights_upto(net, weightfile, 0, net->n);
|
|
load_weights_upto(net, weightfile, l, net->n);
|
|
}
|
|
*net->seen = 0;
|
|
save_weights_upto(net, outfile, net->n);
|
|
}
|
|
|
|
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 1);
|
|
save_weights_upto(net, outfile, max);
|
|
}
|
|
|
|
void print_weights(char *cfgfile, char *weightfile, int n)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 1);
|
|
layer l = net->layers[n];
|
|
int i, j;
|
|
//printf("[");
|
|
for(i = 0; i < l.n; ++i){
|
|
//printf("[");
|
|
for(j = 0; j < l.size*l.size*l.c; ++j){
|
|
//if(j > 0) printf(",");
|
|
printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
|
|
}
|
|
printf("\n");
|
|
//printf("]%s\n", (i == l.n-1)?"":",");
|
|
}
|
|
//printf("]");
|
|
}
|
|
|
|
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
rescale_weights(l, 2, -.5);
|
|
break;
|
|
}
|
|
}
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
rgbgr_weights(l);
|
|
break;
|
|
}
|
|
}
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for (i = 0; i < net->n; ++i) {
|
|
layer l = net->layers[i];
|
|
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
|
|
denormalize_convolutional_layer(l);
|
|
}
|
|
if (l.type == CONNECTED && l.batch_normalize) {
|
|
denormalize_connected_layer(l);
|
|
}
|
|
if (l.type == GRU && l.batch_normalize) {
|
|
denormalize_connected_layer(*l.input_z_layer);
|
|
denormalize_connected_layer(*l.input_r_layer);
|
|
denormalize_connected_layer(*l.input_h_layer);
|
|
denormalize_connected_layer(*l.state_z_layer);
|
|
denormalize_connected_layer(*l.state_r_layer);
|
|
denormalize_connected_layer(*l.state_h_layer);
|
|
}
|
|
}
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
layer normalize_layer(layer l, int n)
|
|
{
|
|
int j;
|
|
l.batch_normalize=1;
|
|
l.scales = calloc(n, sizeof(float));
|
|
for(j = 0; j < n; ++j){
|
|
l.scales[j] = 1;
|
|
}
|
|
l.rolling_mean = calloc(n, sizeof(float));
|
|
l.rolling_variance = calloc(n, sizeof(float));
|
|
return l;
|
|
}
|
|
|
|
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
|
|
net->layers[i] = normalize_layer(l, l.n);
|
|
}
|
|
if (l.type == CONNECTED && !l.batch_normalize) {
|
|
net->layers[i] = normalize_layer(l, l.outputs);
|
|
}
|
|
if (l.type == GRU && l.batch_normalize) {
|
|
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
|
|
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
|
|
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
|
|
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
|
|
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
|
|
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
|
|
net->layers[i].batch_normalize=1;
|
|
}
|
|
}
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
void statistics_net(char *cfgfile, char *weightfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for (i = 0; i < net->n; ++i) {
|
|
layer l = net->layers[i];
|
|
if (l.type == CONNECTED && l.batch_normalize) {
|
|
printf("Connected Layer %d\n", i);
|
|
statistics_connected_layer(l);
|
|
}
|
|
if (l.type == GRU && l.batch_normalize) {
|
|
printf("GRU Layer %d\n", i);
|
|
printf("Input Z\n");
|
|
statistics_connected_layer(*l.input_z_layer);
|
|
printf("Input R\n");
|
|
statistics_connected_layer(*l.input_r_layer);
|
|
printf("Input H\n");
|
|
statistics_connected_layer(*l.input_h_layer);
|
|
printf("State Z\n");
|
|
statistics_connected_layer(*l.state_z_layer);
|
|
printf("State R\n");
|
|
statistics_connected_layer(*l.state_r_layer);
|
|
printf("State H\n");
|
|
statistics_connected_layer(*l.state_h_layer);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
|
|
{
|
|
gpu_index = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
int i;
|
|
for (i = 0; i < net->n; ++i) {
|
|
layer l = net->layers[i];
|
|
if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
|
|
denormalize_convolutional_layer(l);
|
|
net->layers[i].batch_normalize=0;
|
|
}
|
|
if (l.type == CONNECTED && l.batch_normalize) {
|
|
denormalize_connected_layer(l);
|
|
net->layers[i].batch_normalize=0;
|
|
}
|
|
if (l.type == GRU && l.batch_normalize) {
|
|
denormalize_connected_layer(*l.input_z_layer);
|
|
denormalize_connected_layer(*l.input_r_layer);
|
|
denormalize_connected_layer(*l.input_h_layer);
|
|
denormalize_connected_layer(*l.state_z_layer);
|
|
denormalize_connected_layer(*l.state_r_layer);
|
|
denormalize_connected_layer(*l.state_h_layer);
|
|
l.input_z_layer->batch_normalize = 0;
|
|
l.input_r_layer->batch_normalize = 0;
|
|
l.input_h_layer->batch_normalize = 0;
|
|
l.state_z_layer->batch_normalize = 0;
|
|
l.state_r_layer->batch_normalize = 0;
|
|
l.state_h_layer->batch_normalize = 0;
|
|
net->layers[i].batch_normalize=0;
|
|
}
|
|
}
|
|
save_weights(net, outfile);
|
|
}
|
|
|
|
void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
|
|
{
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
image *ims = get_weights(net->layers[0]);
|
|
int n = net->layers[0].n;
|
|
int z;
|
|
for(z = 0; z < num; ++z){
|
|
image im = make_image(h, w, 3);
|
|
fill_image(im, .5);
|
|
int i;
|
|
for(i = 0; i < 100; ++i){
|
|
image r = copy_image(ims[rand()%n]);
|
|
rotate_image_cw(r, rand()%4);
|
|
random_distort_image(r, 1, 1.5, 1.5);
|
|
int dx = rand()%(w-r.w);
|
|
int dy = rand()%(h-r.h);
|
|
ghost_image(r, im, dx, dy);
|
|
free_image(r);
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/gen_%d", prefix, z);
|
|
save_image(im, buff);
|
|
free_image(im);
|
|
}
|
|
}
|
|
|
|
void visualize(char *cfgfile, char *weightfile)
|
|
{
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
visualize_network(net);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
//test_resize("data/bad.jpg");
|
|
//test_box();
|
|
//test_convolutional_layer();
|
|
if(argc < 2){
|
|
fprintf(stderr, "usage: %s <function>\n", argv[0]);
|
|
return 0;
|
|
}
|
|
gpu_index = find_int_arg(argc, argv, "-i", 0);
|
|
if(find_arg(argc, argv, "-nogpu")) {
|
|
gpu_index = -1;
|
|
}
|
|
|
|
#ifndef GPU
|
|
gpu_index = -1;
|
|
#else
|
|
if(gpu_index >= 0){
|
|
cuda_set_device(gpu_index);
|
|
}
|
|
#endif
|
|
|
|
if (0 == strcmp(argv[1], "average")){
|
|
average(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "yolo")){
|
|
run_yolo(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "super")){
|
|
run_super(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "lsd")){
|
|
run_lsd(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "detector")){
|
|
run_detector(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "detect")){
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .5);
|
|
char *filename = (argc > 4) ? argv[4]: 0;
|
|
char *outfile = find_char_arg(argc, argv, "-out", 0);
|
|
int fullscreen = find_arg(argc, argv, "-fullscreen");
|
|
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);
|
|
} else if (0 == strcmp(argv[1], "cifar")){
|
|
run_cifar(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "go")){
|
|
run_go(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "rnn")){
|
|
run_char_rnn(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "coco")){
|
|
run_coco(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "classify")){
|
|
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
|
|
} else if (0 == strcmp(argv[1], "classifier")){
|
|
run_classifier(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "regressor")){
|
|
run_regressor(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "isegmenter")){
|
|
run_isegmenter(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "segmenter")){
|
|
run_segmenter(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "art")){
|
|
run_art(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "tag")){
|
|
run_tag(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "3d")){
|
|
composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
|
|
} else if (0 == strcmp(argv[1], "test")){
|
|
test_resize(argv[2]);
|
|
} else if (0 == strcmp(argv[1], "nightmare")){
|
|
run_nightmare(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "rgbgr")){
|
|
rgbgr_net(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "reset")){
|
|
reset_normalize_net(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "denormalize")){
|
|
denormalize_net(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "statistics")){
|
|
statistics_net(argv[2], argv[3]);
|
|
} else if (0 == strcmp(argv[1], "normalize")){
|
|
normalize_net(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "rescale")){
|
|
rescale_net(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "ops")){
|
|
operations(argv[2]);
|
|
} else if (0 == strcmp(argv[1], "speed")){
|
|
speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
|
|
} else if (0 == strcmp(argv[1], "oneoff")){
|
|
oneoff(argv[2], argv[3], argv[4]);
|
|
} else if (0 == strcmp(argv[1], "oneoff2")){
|
|
oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
|
|
} else if (0 == strcmp(argv[1], "print")){
|
|
print_weights(argv[2], argv[3], atoi(argv[4]));
|
|
} else if (0 == strcmp(argv[1], "partial")){
|
|
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
|
|
} else if (0 == strcmp(argv[1], "average")){
|
|
average(argc, argv);
|
|
} else if (0 == strcmp(argv[1], "visualize")){
|
|
visualize(argv[2], (argc > 3) ? argv[3] : 0);
|
|
} else if (0 == strcmp(argv[1], "mkimg")){
|
|
mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
|
|
} else if (0 == strcmp(argv[1], "imtest")){
|
|
test_resize(argv[2]);
|
|
} else {
|
|
fprintf(stderr, "Not an option: %s\n", argv[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|