Files
darknet/src/shortcut_layer.c

99 lines
3.3 KiB
C

#include "shortcut_layer.h"
#include "dark_cuda.h"
#include "blas.h"
#include <stdio.h>
#include <assert.h>
layer make_shortcut_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2)
{
fprintf(stderr,"Shortcut Layer: %d\n", index);
layer l = { (LAYER_TYPE)0 };
l.type = SHORTCUT;
l.batch = batch;
l.w = w2;
l.h = h2;
l.c = c2;
l.out_w = w;
l.out_h = h;
l.out_c = c;
l.outputs = w*h*c;
l.inputs = l.outputs;
l.index = index;
l.delta = (float*)calloc(l.outputs * batch, sizeof(float));
l.output = (float*)calloc(l.outputs * batch, sizeof(float));
l.forward = forward_shortcut_layer;
l.backward = backward_shortcut_layer;
#ifdef GPU
l.forward_gpu = forward_shortcut_layer_gpu;
l.backward_gpu = backward_shortcut_layer_gpu;
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
#endif
return l;
}
void resize_shortcut_layer(layer *l, int w, int h)
{
//assert(l->w == l->out_w);
//assert(l->h == l->out_h);
l->w = l->out_w = w;
l->h = l->out_h = h;
l->outputs = w*h*l->out_c;
l->inputs = l->outputs;
l->delta = (float*)realloc(l->delta, l->outputs * l->batch * sizeof(float));
l->output = (float*)realloc(l->output, l->outputs * l->batch * sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
#endif
}
void forward_shortcut_layer(const layer l, network_state state)
{
if (l.w == l.out_w && l.h == l.out_h && l.c == l.out_c) {
int size = l.batch * l.w * l.h * l.c;
int i;
#pragma omp parallel for
for(i = 0; i < size; ++i)
l.output[i] = state.input[i] + state.net.layers[l.index].output[i];
}
else {
copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
shortcut_cpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output);
}
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_shortcut_layer(const layer l, network_state state)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
}
#ifdef GPU
void forward_shortcut_layer_gpu(const layer l, network_state state)
{
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
//simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
//shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_shortcut_layer_gpu(const layer l, network_state state)
{
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1);
shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu);
}
#endif