mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
99 lines
3.3 KiB
C
99 lines
3.3 KiB
C
#include "shortcut_layer.h"
|
|
#include "dark_cuda.h"
|
|
#include "blas.h"
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
layer make_shortcut_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2)
|
|
{
|
|
fprintf(stderr,"Shortcut Layer: %d\n", index);
|
|
layer l = { (LAYER_TYPE)0 };
|
|
l.type = SHORTCUT;
|
|
l.batch = batch;
|
|
l.w = w2;
|
|
l.h = h2;
|
|
l.c = c2;
|
|
l.out_w = w;
|
|
l.out_h = h;
|
|
l.out_c = c;
|
|
l.outputs = w*h*c;
|
|
l.inputs = l.outputs;
|
|
|
|
l.index = index;
|
|
|
|
l.delta = (float*)calloc(l.outputs * batch, sizeof(float));
|
|
l.output = (float*)calloc(l.outputs * batch, sizeof(float));
|
|
|
|
l.forward = forward_shortcut_layer;
|
|
l.backward = backward_shortcut_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_shortcut_layer_gpu;
|
|
l.backward_gpu = backward_shortcut_layer_gpu;
|
|
|
|
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
|
|
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
|
|
#endif
|
|
return l;
|
|
}
|
|
|
|
void resize_shortcut_layer(layer *l, int w, int h)
|
|
{
|
|
//assert(l->w == l->out_w);
|
|
//assert(l->h == l->out_h);
|
|
l->w = l->out_w = w;
|
|
l->h = l->out_h = h;
|
|
l->outputs = w*h*l->out_c;
|
|
l->inputs = l->outputs;
|
|
l->delta = (float*)realloc(l->delta, l->outputs * l->batch * sizeof(float));
|
|
l->output = (float*)realloc(l->output, l->outputs * l->batch * sizeof(float));
|
|
|
|
#ifdef GPU
|
|
cuda_free(l->output_gpu);
|
|
cuda_free(l->delta_gpu);
|
|
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
|
|
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
|
|
#endif
|
|
|
|
}
|
|
|
|
void forward_shortcut_layer(const layer l, network_state state)
|
|
{
|
|
if (l.w == l.out_w && l.h == l.out_h && l.c == l.out_c) {
|
|
int size = l.batch * l.w * l.h * l.c;
|
|
int i;
|
|
#pragma omp parallel for
|
|
for(i = 0; i < size; ++i)
|
|
l.output[i] = state.input[i] + state.net.layers[l.index].output[i];
|
|
}
|
|
else {
|
|
copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
|
|
shortcut_cpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output);
|
|
}
|
|
activate_array(l.output, l.outputs*l.batch, l.activation);
|
|
}
|
|
|
|
void backward_shortcut_layer(const layer l, network_state state)
|
|
{
|
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
|
axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
|
|
shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
|
|
}
|
|
|
|
#ifdef GPU
|
|
void forward_shortcut_layer_gpu(const layer l, network_state state)
|
|
{
|
|
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
|
//simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
|
|
//shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
|
|
input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
|
|
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
|
}
|
|
|
|
void backward_shortcut_layer_gpu(const layer l, network_state state)
|
|
{
|
|
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
|
axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1);
|
|
shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu);
|
|
}
|
|
#endif
|