darknet/python/darknet.py
Joseph Redmon fc069593f2 🐍 🐍 🐍 🐍
2017-06-08 13:47:31 -07:00

71 lines
2.0 KiB
Python

from ctypes import *
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
def load_meta(f):
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
return lib.get_metadata(f)
def load_net(cfg, weights):
load_network = lib.load_network_p
load_network.argtypes = [c_char_p, c_char_p, c_int]
load_network.restype = c_void_p
return load_network(cfg, weights, 0)
def load_img(f):
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
return load_image(f, 0, 0)
def letterbox_img(im, w, h):
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
return letterbox_image(im, w, h)
def predict(net, im):
pred = lib.network_predict_image
pred.argtypes = [c_void_p, IMAGE]
pred.restype = POINTER(c_float)
return pred(net, im)
def classify(net, meta, im):
out = predict(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, im):
out = predict(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
if __name__ == "__main__":
net = load_net("cfg/densenet.cfg", "/home/pjreddie/trained/densenet201.weights")
im = load_img("data/wolf.jpg")
meta = load_meta("cfg/imagenet1k.data")
r = classify(net, meta, im)
print r[:10]