mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
280 lines
10 KiB
C
280 lines
10 KiB
C
#include "convolutional_layer.h"
|
|
#include "batchnorm_layer.h"
|
|
#include "blas.h"
|
|
#include <stdio.h>
|
|
|
|
layer make_batchnorm_layer(int batch, int w, int h, int c)
|
|
{
|
|
fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
|
|
layer l = {0};
|
|
l.type = BATCHNORM;
|
|
l.batch = batch;
|
|
l.h = l.out_h = h;
|
|
l.w = l.out_w = w;
|
|
l.c = l.out_c = c;
|
|
l.output = calloc(h * w * c * batch, sizeof(float));
|
|
l.delta = calloc(h * w * c * batch, sizeof(float));
|
|
l.inputs = w*h*c;
|
|
l.outputs = l.inputs;
|
|
|
|
l.scales = calloc(c, sizeof(float));
|
|
l.scale_updates = calloc(c, sizeof(float));
|
|
l.biases = calloc(c, sizeof(float));
|
|
l.bias_updates = calloc(c, sizeof(float));
|
|
int i;
|
|
for(i = 0; i < c; ++i){
|
|
l.scales[i] = 1;
|
|
}
|
|
|
|
l.mean = calloc(c, sizeof(float));
|
|
l.variance = calloc(c, sizeof(float));
|
|
|
|
l.rolling_mean = calloc(c, sizeof(float));
|
|
l.rolling_variance = calloc(c, sizeof(float));
|
|
|
|
l.forward = forward_batchnorm_layer;
|
|
l.backward = backward_batchnorm_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_batchnorm_layer_gpu;
|
|
l.backward_gpu = backward_batchnorm_layer_gpu;
|
|
|
|
l.output_gpu = cuda_make_array(l.output, h * w * c * batch);
|
|
l.delta_gpu = cuda_make_array(l.delta, h * w * c * batch);
|
|
|
|
l.biases_gpu = cuda_make_array(l.biases, c);
|
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, c);
|
|
|
|
l.scales_gpu = cuda_make_array(l.scales, c);
|
|
l.scale_updates_gpu = cuda_make_array(l.scale_updates, c);
|
|
|
|
l.mean_gpu = cuda_make_array(l.mean, c);
|
|
l.variance_gpu = cuda_make_array(l.variance, c);
|
|
|
|
l.rolling_mean_gpu = cuda_make_array(l.mean, c);
|
|
l.rolling_variance_gpu = cuda_make_array(l.variance, c);
|
|
|
|
l.mean_delta_gpu = cuda_make_array(l.mean, c);
|
|
l.variance_delta_gpu = cuda_make_array(l.variance, c);
|
|
|
|
l.x_gpu = cuda_make_array(l.output, l.batch*l.outputs);
|
|
l.x_norm_gpu = cuda_make_array(l.output, l.batch*l.outputs);
|
|
#ifdef CUDNN
|
|
cudnnCreateTensorDescriptor(&l.normTensorDesc);
|
|
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
|
|
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
|
|
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1);
|
|
|
|
#endif
|
|
#endif
|
|
return l;
|
|
}
|
|
|
|
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
|
{
|
|
int i,b,f;
|
|
for(f = 0; f < n; ++f){
|
|
float sum = 0;
|
|
for(b = 0; b < batch; ++b){
|
|
for(i = 0; i < size; ++i){
|
|
int index = i + size*(f + n*b);
|
|
sum += delta[index] * x_norm[index];
|
|
}
|
|
}
|
|
scale_updates[f] += sum;
|
|
}
|
|
}
|
|
|
|
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
|
|
{
|
|
|
|
int i,j,k;
|
|
for(i = 0; i < filters; ++i){
|
|
mean_delta[i] = 0;
|
|
for (j = 0; j < batch; ++j) {
|
|
for (k = 0; k < spatial; ++k) {
|
|
int index = j*filters*spatial + i*spatial + k;
|
|
mean_delta[i] += delta[index];
|
|
}
|
|
}
|
|
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
|
|
}
|
|
}
|
|
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
|
|
{
|
|
|
|
int i,j,k;
|
|
for(i = 0; i < filters; ++i){
|
|
variance_delta[i] = 0;
|
|
for(j = 0; j < batch; ++j){
|
|
for(k = 0; k < spatial; ++k){
|
|
int index = j*filters*spatial + i*spatial + k;
|
|
variance_delta[i] += delta[index]*(x[index] - mean[i]);
|
|
}
|
|
}
|
|
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
|
|
}
|
|
}
|
|
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
|
|
{
|
|
int f, j, k;
|
|
for(j = 0; j < batch; ++j){
|
|
for(f = 0; f < filters; ++f){
|
|
for(k = 0; k < spatial; ++k){
|
|
int index = j*filters*spatial + f*spatial + k;
|
|
delta[index] = delta[index] * 1./(sqrt(variance[f] + .00001f)) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void resize_batchnorm_layer(layer *layer, int w, int h)
|
|
{
|
|
fprintf(stderr, "Not implemented\n");
|
|
}
|
|
|
|
void forward_batchnorm_layer(layer l, network net)
|
|
{
|
|
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
|
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
|
|
if(net.train){
|
|
mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
|
|
variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
|
|
|
|
scal_cpu(l.out_c, .99, l.rolling_mean, 1);
|
|
axpy_cpu(l.out_c, .01, l.mean, 1, l.rolling_mean, 1);
|
|
scal_cpu(l.out_c, .99, l.rolling_variance, 1);
|
|
axpy_cpu(l.out_c, .01, l.variance, 1, l.rolling_variance, 1);
|
|
|
|
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
|
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
|
|
} else {
|
|
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
|
|
}
|
|
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
|
add_bias(l.output, l.biases, l.batch, l.out_c, l.out_h*l.out_w);
|
|
}
|
|
|
|
void backward_batchnorm_layer(layer l, network net)
|
|
{
|
|
if(!net.train){
|
|
l.mean = l.rolling_mean;
|
|
l.variance = l.rolling_variance;
|
|
}
|
|
backward_bias(l.bias_updates, l.delta, l.batch, l.out_c, l.out_w*l.out_h);
|
|
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
|
|
|
|
scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
|
|
|
mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
|
|
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
|
|
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
|
|
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, net.delta, 1);
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
void pull_batchnorm_layer(layer l)
|
|
{
|
|
cuda_pull_array(l.scales_gpu, l.scales, l.c);
|
|
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
|
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
|
}
|
|
void push_batchnorm_layer(layer l)
|
|
{
|
|
cuda_push_array(l.scales_gpu, l.scales, l.c);
|
|
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
|
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
|
}
|
|
|
|
void forward_batchnorm_layer_gpu(layer l, network net)
|
|
{
|
|
if(l.type == BATCHNORM) copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
|
|
copy_gpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
|
|
if (net.train) {
|
|
#ifdef CUDNN
|
|
float one = 1;
|
|
float zero = 0;
|
|
cudnnBatchNormalizationForwardTraining(cudnn_handle(),
|
|
CUDNN_BATCHNORM_SPATIAL,
|
|
&one,
|
|
&zero,
|
|
l.dstTensorDesc,
|
|
l.x_gpu,
|
|
l.dstTensorDesc,
|
|
l.output_gpu,
|
|
l.normTensorDesc,
|
|
l.scales_gpu,
|
|
l.biases_gpu,
|
|
.01,
|
|
l.rolling_mean_gpu,
|
|
l.rolling_variance_gpu,
|
|
.00001,
|
|
l.mean_gpu,
|
|
l.variance_gpu);
|
|
#else
|
|
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
|
|
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
|
|
|
|
scal_gpu(l.out_c, .99, l.rolling_mean_gpu, 1);
|
|
axpy_gpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
|
scal_gpu(l.out_c, .99, l.rolling_variance_gpu, 1);
|
|
axpy_gpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
|
|
|
|
copy_gpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
|
|
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
|
copy_gpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
|
|
|
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
|
|
#endif
|
|
} else {
|
|
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
|
|
}
|
|
|
|
}
|
|
|
|
void backward_batchnorm_layer_gpu(layer l, network net)
|
|
{
|
|
if(!net.train){
|
|
l.mean_gpu = l.rolling_mean_gpu;
|
|
l.variance_gpu = l.rolling_variance_gpu;
|
|
}
|
|
#ifdef CUDNN
|
|
float one = 1;
|
|
float zero = 0;
|
|
cudnnBatchNormalizationBackward(cudnn_handle(),
|
|
CUDNN_BATCHNORM_SPATIAL,
|
|
&one,
|
|
&zero,
|
|
&one,
|
|
&one,
|
|
l.dstTensorDesc,
|
|
l.x_gpu,
|
|
l.dstTensorDesc,
|
|
l.delta_gpu,
|
|
l.dstTensorDesc,
|
|
l.x_norm_gpu,
|
|
l.normTensorDesc,
|
|
l.scales_gpu,
|
|
l.scale_updates_gpu,
|
|
l.bias_updates_gpu,
|
|
.00001,
|
|
l.mean_gpu,
|
|
l.variance_gpu);
|
|
copy_gpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
|
|
#else
|
|
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
|
|
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
|
|
|
|
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
|
|
|
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
|
|
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
|
|
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
|
|
#endif
|
|
if(l.type == BATCHNORM) copy_gpu(l.outputs*l.batch, l.delta_gpu, 1, net.delta_gpu, 1);
|
|
}
|
|
#endif
|