darknet/src/convolutional_kernels.cu
2018-05-04 01:28:59 -07:00

331 lines
10 KiB
Plaintext

#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "gemm.h"
#include "blas.h"
#include "im2col.h"
#include "col2im.h"
#include "utils.h"
#include "cuda.h"
}
__global__ void binarize_kernel(float *x, int n, float *binary)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= n) return;
binary[i] = (x[i] >= 0) ? 1 : -1;
}
void binarize_gpu(float *x, int n, float *binary)
{
binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary);
check_error(cudaPeekAtLastError());
}
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
{
int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (s >= size) return;
int i = 0;
float mean = 0;
for(i = 0; i < n; ++i){
mean += fabsf(input[i*size + s]);
}
mean = mean / n;
for(i = 0; i < n; ++i){
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
}
}
void binarize_input_gpu(float *input, int n, int size, float *binary)
{
binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary);
check_error(cudaPeekAtLastError());
}
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
{
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (f >= n) return;
int i = 0;
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabsf(weights[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
//binary[f*size + i] = weights[f*size + i];
}
}
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
{
binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary);
check_error(cudaPeekAtLastError());
}
void forward_convolutional_layer_gpu(convolutional_layer l, network net)
{
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1);
if(l.binary){
binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu);
swap_binary(&l);
}
if(l.xnor){
binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu);
swap_binary(&l);
binarize_gpu(net.input_gpu, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
net.input_gpu = l.binary_input_gpu;
}
#ifdef CUDNN
float one = 1;
cudnnConvolutionForward(cudnn_handle(),
&one,
l.srcTensorDesc,
net.input_gpu,
l.weightDesc,
l.weights_gpu,
l.convDesc,
l.fw_algo,
net.workspace,
l.workspace_size,
&one,
l.dstTensorDesc,
l.output_gpu);
#else
int i, j;
int m = l.n/l.groups;
int k = l.size*l.size*l.c/l.groups;
int n = l.out_w*l.out_h;
for(i = 0; i < l.batch; ++i){
for(j = 0; j < l.groups; ++j){
float *a = l.weights_gpu + j*l.nweights/l.groups;
float *b = net.workspace;
float *c = l.output_gpu + (i*l.groups + j)*n*m;
float *im = net.input_gpu + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
if (l.size == 1){
b = im;
} else {
im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
}
gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
}
#endif
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, net);
} else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.dot > 0) dot_error_gpu(l);
if(l.binary || l.xnor) swap_binary(&l);
}
__global__ void smooth_kernel(float *x, int n, int w, int h, int c, int size, float rate, float *delta)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= n) return;
int j = id % w;
id /= w;
int i = id % h;
id /= h;
int k = id % c;
id /= c;
int b = id;
int w_offset = -(size/2.f);
int h_offset = -(size/2.f);
int out_index = j + w*(i + h*(k + c*b));
int l, m;
for(l = 0; l < size; ++l){
for(m = 0; m < size; ++m){
int cur_h = h_offset + i + l;
int cur_w = w_offset + j + m;
int index = cur_w + w*(cur_h + h*(k + b*c));
int valid = (cur_h >= 0 && cur_h < h &&
cur_w >= 0 && cur_w < w);
delta[out_index] += valid ? rate*(x[index] - x[out_index]) : 0;
}
}
}
extern "C" void smooth_layer(layer l, int size, float rate)
{
int h = l.out_h;
int w = l.out_w;
int c = l.out_c;
size_t n = h*w*c*l.batch;
smooth_kernel<<<cuda_gridsize(n), BLOCK>>>(l.output_gpu, n, l.w, l.h, l.c, size, rate, l.delta_gpu);
check_error(cudaPeekAtLastError());
}
void backward_convolutional_layer_gpu(convolutional_layer l, network net)
{
if(l.smooth){
smooth_layer(l, 5, l.smooth);
}
//constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
if(l.batch_normalize){
backward_batchnorm_layer_gpu(l, net);
} else {
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
}
float *original_input = net.input_gpu;
if(l.xnor) net.input_gpu = l.binary_input_gpu;
#ifdef CUDNN
float one = 1;
cudnnConvolutionBackwardFilter(cudnn_handle(),
&one,
l.srcTensorDesc,
net.input_gpu,
l.ddstTensorDesc,
l.delta_gpu,
l.convDesc,
l.bf_algo,
net.workspace,
l.workspace_size,
&one,
l.dweightDesc,
l.weight_updates_gpu);
if(net.delta_gpu){
if(l.binary || l.xnor) swap_binary(&l);
cudnnConvolutionBackwardData(cudnn_handle(),
&one,
l.weightDesc,
l.weights_gpu,
l.ddstTensorDesc,
l.delta_gpu,
l.convDesc,
l.bd_algo,
net.workspace,
l.workspace_size,
&one,
l.dsrcTensorDesc,
net.delta_gpu);
if(l.binary || l.xnor) swap_binary(&l);
if(l.xnor) gradient_array_gpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, net.delta_gpu);
}
#else
int m = l.n/l.groups;
int n = l.size*l.size*l.c/l.groups;
int k = l.out_w*l.out_h;
int i, j;
for(i = 0; i < l.batch; ++i){
for(j = 0; j < l.groups; ++j){
float *a = l.delta_gpu + (i*l.groups + j)*m*k;
float *b = net.workspace;
float *c = l.weight_updates_gpu + j*l.nweights/l.groups;
float *im = net.input_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w;
float *imd = net.delta_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w;
im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
if (net.delta_gpu) {
if (l.binary || l.xnor) swap_binary(&l);
a = l.weights_gpu + j*l.nweights/l.groups;
b = l.delta_gpu + (i*l.groups + j)*m*k;
c = net.workspace;
if (l.size == 1) {
c = imd;
}
gemm_gpu(1,0,n,k,m,1,a,n,b,k,0,c,k);
if (l.size != 1) {
col2im_gpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd);
}
if(l.binary || l.xnor) {
swap_binary(&l);
}
}
if(l.xnor) gradient_array_gpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, net.delta_gpu + i*l.c*l.h*l.w);
}
}
#endif
}
void pull_convolutional_layer(layer l)
{
cuda_pull_array(l.weights_gpu, l.weights, l.nweights);
cuda_pull_array(l.biases_gpu, l.biases, l.n);
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n);
if (l.batch_normalize){
cuda_pull_array(l.scales_gpu, l.scales, l.n);
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.n);
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.n);
}
}
void push_convolutional_layer(layer l)
{
cuda_push_array(l.weights_gpu, l.weights, l.nweights);
cuda_push_array(l.biases_gpu, l.biases, l.n);
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
if (l.batch_normalize){
cuda_push_array(l.scales_gpu, l.scales, l.n);
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n);
}
}
void update_convolutional_layer_gpu(layer l, update_args a)
{
float learning_rate = a.learning_rate*l.learning_rate_scale;
float momentum = a.momentum;
float decay = a.decay;
int batch = a.batch;
if(a.adam){
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t);
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
if(l.scales_gpu){
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
}
}else{
axpy_gpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_gpu(l.nweights, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_gpu(l.nweights, momentum, l.weight_updates_gpu, 1);
axpy_gpu(l.n, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_gpu(l.n, momentum, l.bias_updates_gpu, 1);
if(l.scales_gpu){
axpy_gpu(l.n, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
scal_gpu(l.n, momentum, l.scale_updates_gpu, 1);
}
}
if(l.clip){
constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1);
}
}