mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
508 lines
19 KiB
C
508 lines
19 KiB
C
#include "region_layer.h"
|
|
#include "activations.h"
|
|
#include "blas.h"
|
|
#include "box.h"
|
|
#include "cuda.h"
|
|
#include "utils.h"
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
|
|
{
|
|
layer l = {0};
|
|
l.type = REGION;
|
|
|
|
l.n = n;
|
|
l.batch = batch;
|
|
l.h = h;
|
|
l.w = w;
|
|
l.c = n*(classes + coords + 1);
|
|
l.out_w = l.w;
|
|
l.out_h = l.h;
|
|
l.out_c = l.c;
|
|
l.classes = classes;
|
|
l.coords = coords;
|
|
l.cost = calloc(1, sizeof(float));
|
|
l.biases = calloc(n*2, sizeof(float));
|
|
l.bias_updates = calloc(n*2, sizeof(float));
|
|
l.outputs = h*w*n*(classes + coords + 1);
|
|
l.inputs = l.outputs;
|
|
l.truths = 30*(l.coords + 1);
|
|
l.delta = calloc(batch*l.outputs, sizeof(float));
|
|
l.output = calloc(batch*l.outputs, sizeof(float));
|
|
int i;
|
|
for(i = 0; i < n*2; ++i){
|
|
l.biases[i] = .5;
|
|
}
|
|
|
|
l.forward = forward_region_layer;
|
|
l.backward = backward_region_layer;
|
|
#ifdef GPU
|
|
l.forward_gpu = forward_region_layer_gpu;
|
|
l.backward_gpu = backward_region_layer_gpu;
|
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
|
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
|
#endif
|
|
|
|
fprintf(stderr, "detection\n");
|
|
srand(0);
|
|
|
|
return l;
|
|
}
|
|
|
|
void resize_region_layer(layer *l, int w, int h)
|
|
{
|
|
l->w = w;
|
|
l->h = h;
|
|
|
|
l->outputs = h*w*l->n*(l->classes + l->coords + 1);
|
|
l->inputs = l->outputs;
|
|
|
|
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
|
|
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
|
|
|
|
#ifdef GPU
|
|
cuda_free(l->delta_gpu);
|
|
cuda_free(l->output_gpu);
|
|
|
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
|
|
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
|
|
#endif
|
|
}
|
|
|
|
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h, int stride)
|
|
{
|
|
box b;
|
|
b.x = (i + x[index + 0*stride]) / w;
|
|
b.y = (j + x[index + 1*stride]) / h;
|
|
b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
|
|
b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
|
|
return b;
|
|
}
|
|
|
|
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride)
|
|
{
|
|
box pred = get_region_box(x, biases, n, index, i, j, w, h, stride);
|
|
float iou = box_iou(pred, truth);
|
|
|
|
float tx = (truth.x*w - i);
|
|
float ty = (truth.y*h - j);
|
|
float tw = log(truth.w*w / biases[2*n]);
|
|
float th = log(truth.h*h / biases[2*n + 1]);
|
|
|
|
delta[index + 0*stride] = scale * (tx - x[index + 0*stride]);
|
|
delta[index + 1*stride] = scale * (ty - x[index + 1*stride]);
|
|
delta[index + 2*stride] = scale * (tw - x[index + 2*stride]);
|
|
delta[index + 3*stride] = scale * (th - x[index + 3*stride]);
|
|
return iou;
|
|
}
|
|
|
|
void delta_region_mask(float *truth, float *x, int n, int index, float *delta, int stride, int scale)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
delta[index + i*stride] = scale*(truth[i] - x[index + i*stride]);
|
|
}
|
|
}
|
|
|
|
|
|
void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, int stride, float *avg_cat, int tag)
|
|
{
|
|
int i, n;
|
|
if(hier){
|
|
float pred = 1;
|
|
while(class >= 0){
|
|
pred *= output[index + stride*class];
|
|
int g = hier->group[class];
|
|
int offset = hier->group_offset[g];
|
|
for(i = 0; i < hier->group_size[g]; ++i){
|
|
delta[index + stride*(offset + i)] = scale * (0 - output[index + stride*(offset + i)]);
|
|
}
|
|
delta[index + stride*class] = scale * (1 - output[index + stride*class]);
|
|
|
|
class = hier->parent[class];
|
|
}
|
|
*avg_cat += pred;
|
|
} else {
|
|
if (delta[index] && tag){
|
|
delta[index + stride*class] = scale * (1 - output[index + stride*class]);
|
|
return;
|
|
}
|
|
for(n = 0; n < classes; ++n){
|
|
delta[index + stride*n] = scale * (((n == class)?1 : 0) - output[index + stride*n]);
|
|
if(n == class) *avg_cat += output[index + stride*n];
|
|
}
|
|
}
|
|
}
|
|
|
|
float logit(float x)
|
|
{
|
|
return log(x/(1.-x));
|
|
}
|
|
|
|
float tisnan(float x)
|
|
{
|
|
return (x != x);
|
|
}
|
|
|
|
int entry_index(layer l, int batch, int location, int entry)
|
|
{
|
|
int n = location / (l.w*l.h);
|
|
int loc = location % (l.w*l.h);
|
|
return batch*l.outputs + n*l.w*l.h*(l.coords+l.classes+1) + entry*l.w*l.h + loc;
|
|
}
|
|
|
|
void forward_region_layer(const layer l, network net)
|
|
{
|
|
int i,j,b,t,n;
|
|
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float));
|
|
|
|
#ifndef GPU
|
|
for (b = 0; b < l.batch; ++b){
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = entry_index(l, b, n*l.w*l.h, 0);
|
|
activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
|
|
index = entry_index(l, b, n*l.w*l.h, l.coords);
|
|
if(!l.background) activate_array(l.output + index, l.w*l.h, LOGISTIC);
|
|
index = entry_index(l, b, n*l.w*l.h, l.coords + 1);
|
|
if(!l.softmax && !l.softmax_tree) activate_array(l.output + index, l.classes*l.w*l.h, LOGISTIC);
|
|
}
|
|
}
|
|
if (l.softmax_tree){
|
|
int i;
|
|
int count = l.coords + 1;
|
|
for (i = 0; i < l.softmax_tree->groups; ++i) {
|
|
int group_size = l.softmax_tree->group_size[i];
|
|
softmax_cpu(net.input + count, group_size, l.batch, l.inputs, l.n*l.w*l.h, 1, l.n*l.w*l.h, l.temperature, l.output + count);
|
|
count += group_size;
|
|
}
|
|
} else if (l.softmax){
|
|
int index = entry_index(l, 0, 0, l.coords + !l.background);
|
|
softmax_cpu(net.input + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output + index);
|
|
}
|
|
#endif
|
|
|
|
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
|
|
if(!net.train) return;
|
|
float avg_iou = 0;
|
|
float recall = 0;
|
|
float avg_cat = 0;
|
|
float avg_obj = 0;
|
|
float avg_anyobj = 0;
|
|
int count = 0;
|
|
int class_count = 0;
|
|
*(l.cost) = 0;
|
|
for (b = 0; b < l.batch; ++b) {
|
|
if(l.softmax_tree){
|
|
int onlyclass = 0;
|
|
for(t = 0; t < 30; ++t){
|
|
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
|
|
if(!truth.x) break;
|
|
int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
|
|
float maxp = 0;
|
|
int maxi = 0;
|
|
if(truth.x > 100000 && truth.y > 100000){
|
|
for(n = 0; n < l.n*l.w*l.h; ++n){
|
|
int class_index = entry_index(l, b, n, l.coords + 1);
|
|
int obj_index = entry_index(l, b, n, l.coords);
|
|
float scale = l.output[obj_index];
|
|
l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]);
|
|
float p = scale*get_hierarchy_probability(l.output + class_index, l.softmax_tree, class, l.w*l.h);
|
|
if(p > maxp){
|
|
maxp = p;
|
|
maxi = n;
|
|
}
|
|
}
|
|
int class_index = entry_index(l, b, maxi, l.coords + 1);
|
|
int obj_index = entry_index(l, b, maxi, l.coords);
|
|
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
|
|
if(l.output[obj_index] < .3) l.delta[obj_index] = l.object_scale * (.3 - l.output[obj_index]);
|
|
else l.delta[obj_index] = 0;
|
|
l.delta[obj_index] = 0;
|
|
++class_count;
|
|
onlyclass = 1;
|
|
break;
|
|
}
|
|
}
|
|
if(onlyclass) continue;
|
|
}
|
|
for (j = 0; j < l.h; ++j) {
|
|
for (i = 0; i < l.w; ++i) {
|
|
for (n = 0; n < l.n; ++n) {
|
|
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
|
|
box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
|
|
float best_iou = 0;
|
|
for(t = 0; t < 30; ++t){
|
|
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
|
|
if(!truth.x) break;
|
|
float iou = box_iou(pred, truth);
|
|
if (iou > best_iou) {
|
|
best_iou = iou;
|
|
}
|
|
}
|
|
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, l.coords);
|
|
avg_anyobj += l.output[obj_index];
|
|
l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]);
|
|
if(l.background) l.delta[obj_index] = l.noobject_scale * (1 - l.output[obj_index]);
|
|
if (best_iou > l.thresh) {
|
|
l.delta[obj_index] = 0;
|
|
}
|
|
|
|
if(*(net.seen) < 12800){
|
|
box truth = {0};
|
|
truth.x = (i + .5)/l.w;
|
|
truth.y = (j + .5)/l.h;
|
|
truth.w = l.biases[2*n]/l.w;
|
|
truth.h = l.biases[2*n+1]/l.h;
|
|
delta_region_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, l.delta, .01, l.w*l.h);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(t = 0; t < 30; ++t){
|
|
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
|
|
|
|
if(!truth.x) break;
|
|
float best_iou = 0;
|
|
int best_n = 0;
|
|
i = (truth.x * l.w);
|
|
j = (truth.y * l.h);
|
|
box truth_shift = truth;
|
|
truth_shift.x = 0;
|
|
truth_shift.y = 0;
|
|
for(n = 0; n < l.n; ++n){
|
|
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
|
|
box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
|
|
if(l.bias_match){
|
|
pred.w = l.biases[2*n]/l.w;
|
|
pred.h = l.biases[2*n+1]/l.h;
|
|
}
|
|
pred.x = 0;
|
|
pred.y = 0;
|
|
float iou = box_iou(pred, truth_shift);
|
|
if (iou > best_iou){
|
|
best_iou = iou;
|
|
best_n = n;
|
|
}
|
|
}
|
|
|
|
int box_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 0);
|
|
float iou = delta_region_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, l.delta, l.coord_scale * (2 - truth.w*truth.h), l.w*l.h);
|
|
if(l.coords > 4){
|
|
int mask_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 4);
|
|
delta_region_mask(net.truth + t*(l.coords + 1) + b*l.truths + 5, l.output, l.coords - 4, mask_index, l.delta, l.w*l.h, l.mask_scale);
|
|
}
|
|
if(iou > .5) recall += 1;
|
|
avg_iou += iou;
|
|
|
|
int obj_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords);
|
|
avg_obj += l.output[obj_index];
|
|
l.delta[obj_index] = l.object_scale * (1 - l.output[obj_index]);
|
|
if (l.rescore) {
|
|
l.delta[obj_index] = l.object_scale * (iou - l.output[obj_index]);
|
|
}
|
|
if(l.background){
|
|
l.delta[obj_index] = l.object_scale * (0 - l.output[obj_index]);
|
|
}
|
|
|
|
int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
|
|
if (l.map) class = l.map[class];
|
|
int class_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords + 1);
|
|
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
|
|
++count;
|
|
++class_count;
|
|
}
|
|
}
|
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
|
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
|
|
}
|
|
|
|
void backward_region_layer(const layer l, network net)
|
|
{
|
|
/*
|
|
int b;
|
|
int size = l.coords + l.classes + 1;
|
|
for (b = 0; b < l.batch*l.n; ++b){
|
|
int index = (b*size + 4)*l.w*l.h;
|
|
gradient_array(l.output + index, l.w*l.h, LOGISTIC, l.delta + index);
|
|
}
|
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
|
|
*/
|
|
}
|
|
|
|
void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
|
|
{
|
|
int i;
|
|
int new_w=0;
|
|
int new_h=0;
|
|
if (((float)netw/w) < ((float)neth/h)) {
|
|
new_w = netw;
|
|
new_h = (h * netw)/w;
|
|
} else {
|
|
new_h = neth;
|
|
new_w = (w * neth)/h;
|
|
}
|
|
for (i = 0; i < n; ++i){
|
|
box b = dets[i].bbox;
|
|
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
|
|
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
|
|
b.w *= (float)netw/new_w;
|
|
b.h *= (float)neth/new_h;
|
|
if(!relative){
|
|
b.x *= w;
|
|
b.w *= w;
|
|
b.y *= h;
|
|
b.h *= h;
|
|
}
|
|
dets[i].bbox = b;
|
|
}
|
|
}
|
|
|
|
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
|
|
{
|
|
int i,j,n,z;
|
|
float *predictions = l.output;
|
|
if (l.batch == 2) {
|
|
float *flip = l.output + l.outputs;
|
|
for (j = 0; j < l.h; ++j) {
|
|
for (i = 0; i < l.w/2; ++i) {
|
|
for (n = 0; n < l.n; ++n) {
|
|
for(z = 0; z < l.classes + l.coords + 1; ++z){
|
|
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
|
|
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
|
|
float swap = flip[i1];
|
|
flip[i1] = flip[i2];
|
|
flip[i2] = swap;
|
|
if(z == 0){
|
|
flip[i1] = -flip[i1];
|
|
flip[i2] = -flip[i2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(i = 0; i < l.outputs; ++i){
|
|
l.output[i] = (l.output[i] + flip[i])/2.;
|
|
}
|
|
}
|
|
for (i = 0; i < l.w*l.h; ++i){
|
|
int row = i / l.w;
|
|
int col = i % l.w;
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = n*l.w*l.h + i;
|
|
for(j = 0; j < l.classes; ++j){
|
|
dets[index].prob[j] = 0;
|
|
}
|
|
int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
|
|
int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
|
|
int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
|
|
float scale = l.background ? 1 : predictions[obj_index];
|
|
dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h, l.w*l.h);
|
|
dets[index].objectness = scale > thresh ? scale : 0;
|
|
if(dets[index].mask){
|
|
for(j = 0; j < l.coords - 4; ++j){
|
|
dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
|
|
}
|
|
}
|
|
|
|
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
|
|
if(l.softmax_tree){
|
|
|
|
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0, l.w*l.h);
|
|
if(map){
|
|
for(j = 0; j < 200; ++j){
|
|
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
|
|
float prob = scale*predictions[class_index];
|
|
dets[index].prob[j] = (prob > thresh) ? prob : 0;
|
|
}
|
|
} else {
|
|
int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
|
|
dets[index].prob[j] = (scale > thresh) ? scale : 0;
|
|
}
|
|
} else {
|
|
if(dets[index].objectness){
|
|
for(j = 0; j < l.classes; ++j){
|
|
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
|
|
float prob = scale*predictions[class_index];
|
|
dets[index].prob[j] = (prob > thresh) ? prob : 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
void forward_region_layer_gpu(const layer l, network net)
|
|
{
|
|
copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
|
|
int b, n;
|
|
for (b = 0; b < l.batch; ++b){
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = entry_index(l, b, n*l.w*l.h, 0);
|
|
activate_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
|
|
if(l.coords > 4){
|
|
index = entry_index(l, b, n*l.w*l.h, 4);
|
|
activate_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC);
|
|
}
|
|
index = entry_index(l, b, n*l.w*l.h, l.coords);
|
|
if(!l.background) activate_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
|
|
index = entry_index(l, b, n*l.w*l.h, l.coords + 1);
|
|
if(!l.softmax && !l.softmax_tree) activate_array_gpu(l.output_gpu + index, l.classes*l.w*l.h, LOGISTIC);
|
|
}
|
|
}
|
|
if (l.softmax_tree){
|
|
int index = entry_index(l, 0, 0, l.coords + 1);
|
|
softmax_tree(net.input_gpu + index, l.w*l.h, l.batch*l.n, l.inputs/l.n, 1, l.output_gpu + index, *l.softmax_tree);
|
|
} else if (l.softmax) {
|
|
int index = entry_index(l, 0, 0, l.coords + !l.background);
|
|
softmax_gpu(net.input_gpu + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu + index);
|
|
}
|
|
if(!net.train || l.onlyforward){
|
|
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
|
|
return;
|
|
}
|
|
|
|
cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs);
|
|
forward_region_layer(l, net);
|
|
//cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
|
if(!net.train) return;
|
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
|
|
}
|
|
|
|
void backward_region_layer_gpu(const layer l, network net)
|
|
{
|
|
int b, n;
|
|
for (b = 0; b < l.batch; ++b){
|
|
for(n = 0; n < l.n; ++n){
|
|
int index = entry_index(l, b, n*l.w*l.h, 0);
|
|
gradient_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC, l.delta_gpu + index);
|
|
if(l.coords > 4){
|
|
index = entry_index(l, b, n*l.w*l.h, 4);
|
|
gradient_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC, l.delta_gpu + index);
|
|
}
|
|
index = entry_index(l, b, n*l.w*l.h, l.coords);
|
|
if(!l.background) gradient_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC, l.delta_gpu + index);
|
|
}
|
|
}
|
|
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
|
|
}
|
|
#endif
|
|
|
|
void zero_objectness(layer l)
|
|
{
|
|
int i, n;
|
|
for (i = 0; i < l.w*l.h; ++i){
|
|
for(n = 0; n < l.n; ++n){
|
|
int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
|
|
l.output[obj_index] = 0;
|
|
}
|
|
}
|
|
}
|
|
|