Files
darknet/src/softmax_layer.c

101 lines
2.8 KiB
C

#include "softmax_layer.h"
#include "blas.h"
#include "cuda.h"
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
{
assert(inputs%groups == 0);
fprintf(stderr, "softmax %4d\n", inputs);
softmax_layer l = {0};
l.type = SOFTMAX;
l.batch = batch;
l.groups = groups;
l.inputs = inputs;
l.outputs = inputs;
l.output = calloc(inputs*batch, sizeof(float));
l.delta = calloc(inputs*batch, sizeof(float));
l.forward = forward_softmax_layer;
l.backward = backward_softmax_layer;
#ifdef GPU
l.forward_gpu = forward_softmax_layer_gpu;
l.backward_gpu = backward_softmax_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
}
void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output)
{
int b;
for(b = 0; b < batch; ++b){
int i;
int count = 0;
for(i = 0; i < hierarchy->groups; ++i){
int group_size = hierarchy->group_size[i];
softmax(input+b*inputs + count, group_size, temp, output+b*inputs + count, 1);
count += group_size;
}
}
}
void forward_softmax_layer(const softmax_layer l, network_state state)
{
int b;
int inputs = l.inputs / l.groups;
int batch = l.batch * l.groups;
if(l.softmax_tree){
softmax_tree(state.input, batch, inputs, l.temperature, l.softmax_tree, l.output);
} else {
for(b = 0; b < batch; ++b){
softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs, 1);
}
}
}
void backward_softmax_layer(const softmax_layer l, network_state state)
{
int i;
for(i = 0; i < l.inputs*l.batch; ++i){
state.delta[i] += l.delta[i];
}
}
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer)
{
cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
}
void forward_softmax_layer_gpu(const softmax_layer l, network_state state)
{
int inputs = l.inputs / l.groups;
int batch = l.batch * l.groups;
if(l.softmax_tree){
int i;
int count = 0;
for (i = 0; i < l.softmax_tree->groups; ++i) {
int group_size = l.softmax_tree->group_size[i];
softmax_gpu(state.input+count, group_size, inputs, batch, l.temperature, l.output_gpu + count);
count += group_size;
}
} else {
softmax_gpu(state.input, inputs, inputs, batch, l.temperature, l.output_gpu);
}
}
void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
{
axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1);
}
#endif