mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
122 lines
3.0 KiB
C++
122 lines
3.0 KiB
C++
#pragma once
|
|
#include <memory>
|
|
#include <vector>
|
|
#include <deque>
|
|
#include <algorithm>
|
|
|
|
#ifdef OPENCV
|
|
#include <opencv2/opencv.hpp> // C++
|
|
#include "opencv2/highgui/highgui_c.h" // C
|
|
#include "opencv2/imgproc/imgproc_c.h" // C
|
|
#endif // OPENCV
|
|
|
|
#ifdef YOLODLL_EXPORTS
|
|
#define YOLODLL_API __declspec(dllexport)
|
|
#else
|
|
#define YOLODLL_API __declspec(dllimport)
|
|
#endif
|
|
|
|
struct bbox_t {
|
|
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
|
|
float prob; // confidence - probability that the object was found correctly
|
|
unsigned int obj_id; // class of object - from range [0, classes-1]
|
|
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
|
|
};
|
|
|
|
struct image_t {
|
|
int h; // height
|
|
int w; // width
|
|
int c; // number of chanels (3 - for RGB)
|
|
float *data; // pointer to the image data
|
|
};
|
|
|
|
|
|
class Detector {
|
|
std::shared_ptr<void> detector_gpu_ptr;
|
|
public:
|
|
float nms = .4;
|
|
|
|
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
|
|
YOLODLL_API ~Detector();
|
|
|
|
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
|
|
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
|
|
static YOLODLL_API image_t load_image(std::string image_filename);
|
|
static YOLODLL_API void free_image(image_t m);
|
|
|
|
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 4);
|
|
|
|
#ifdef OPENCV
|
|
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2)
|
|
{
|
|
if(mat.data == NULL)
|
|
throw std::runtime_error("file not found");
|
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
|
|
*image_ptr = mat_to_image(mat);
|
|
return detect(*image_ptr, thresh);
|
|
}
|
|
|
|
private:
|
|
static image_t mat_to_image(cv::Mat img)
|
|
{
|
|
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
|
|
image_t im_small = ipl_to_image(ipl_small.get());
|
|
rgbgr_image(im_small);
|
|
return im_small;
|
|
}
|
|
|
|
static image_t ipl_to_image(IplImage* src)
|
|
{
|
|
unsigned char *data = (unsigned char *)src->imageData;
|
|
int h = src->height;
|
|
int w = src->width;
|
|
int c = src->nChannels;
|
|
int step = src->widthStep;
|
|
image_t out = make_image_custom(w, h, c);
|
|
int i, j, k, count = 0;;
|
|
|
|
for (k = 0; k < c; ++k) {
|
|
for (i = 0; i < h; ++i) {
|
|
for (j = 0; j < w; ++j) {
|
|
out.data[count++] = data[i*step + j*c + k] / 255.;
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static image_t make_empty_image(int w, int h, int c)
|
|
{
|
|
image_t out;
|
|
out.data = 0;
|
|
out.h = h;
|
|
out.w = w;
|
|
out.c = c;
|
|
return out;
|
|
}
|
|
|
|
static image_t make_image_custom(int w, int h, int c)
|
|
{
|
|
image_t out = make_empty_image(w, h, c);
|
|
out.data = (float *)calloc(h*w*c, sizeof(float));
|
|
return out;
|
|
}
|
|
|
|
static void rgbgr_image(image_t im)
|
|
{
|
|
int i;
|
|
for (i = 0; i < im.w*im.h; ++i) {
|
|
float swap = im.data[i];
|
|
im.data[i] = im.data[i + im.w*im.h * 2];
|
|
im.data[i + im.w*im.h * 2] = swap;
|
|
}
|
|
}
|
|
|
|
#endif // OPENCV
|
|
|
|
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
|
|
};
|
|
|
|
|
|
|