darknet/examples/tag.cpp
2022-09-20 11:16:06 +08:00

141 lines
4.2 KiB
C++

#include "darknet.h"
void train_tag(char *cfgfile, char *weightfile, int clear)
{
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base);
network *net = load_network(cfgfile, weightfile, clear);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = 1024;
list *plist = get_paths("/home/pjreddie/tag/train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.min = net->w;
args.max = net->max_crop;
args.size = net->w;
args.paths = paths;
args.classes = net->outputs;
args.n = imgs;
args.m = N;
args.d = &buffer;
args.type = TAG_DATA;
args.angle = net->angle;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
fprintf(stderr, "%d classes\n", net->outputs);
load_thread = load_data_in_thread(args);
int epoch = (*net->seen)/N;
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
free_data(train);
if(*net->seen/N > epoch){
epoch = *net->seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s.backup",backup_directory,base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
pthread_join(load_thread, 0);
free_data(buffer);
free_network(net);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
void test_tag(char *cfgfile, char *weightfile, char *filename)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
int i = 0;
char **names = get_labels("data/tags.txt");
clock_t time;
int indexes[10];
char buff[256];
char *input = buff;
int size = net->w;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
image r = resize_min(im, size);
resize_network(net, r.w, r.h);
printf("%d %d\n", r.w, r.h);
float *X = r.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
}
if(r.data != im.data) free_image(r);
free_image(im);
if (filename) break;
}
}
void run_tag(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
int clear = find_arg(argc, argv, "-clear");
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear);
else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename);
}