darknet/src/data.c
Joseph Redmon d407bffde9 checkpoint
2014-11-18 13:51:04 -08:00

311 lines
7.5 KiB
C

#include "data.h"
#include "utils.h"
#include "image.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
list *get_paths(char *filename)
{
char *path;
FILE *file = fopen(filename, "r");
if(!file) file_error(filename);
list *lines = make_list();
while((path=fgetl(file))){
list_insert(lines, path);
}
fclose(file);
return lines;
}
void fill_truth_det(char *path, float *truth)
{
find_replace(path, "imgs", "det");
find_replace(path, ".JPEG", ".txt");
}
void fill_truth(char *path, char **labels, int k, float *truth)
{
int i;
memset(truth, 0, k*sizeof(float));
for(i = 0; i < k; ++i){
if(strstr(path, labels[i])){
truth[i] = 1;
}
}
}
data load_data_image_paths(char **paths, int n, char **labels, int k, int h, int w)
{
int i;
data d;
d.shallow = 0;
d.X.rows = n;
d.X.vals = calloc(d.X.rows, sizeof(float*));
d.X.cols = 0;
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], h, w);
d.X.vals[i] = im.data;
d.X.cols = im.h*im.w*im.c;
}
for(i = 0; i < n; ++i){
fill_truth(paths[i], labels, k, d.y.vals[i]);
}
return d;
}
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
{
list *plist = get_paths(filename);
char **paths = (char **)list_to_array(plist);
data d = load_data_image_paths(paths, plist->size, labels, k, h, w);
free_list_contents(plist);
free_list(plist);
free(paths);
return d;
}
char **get_labels(char *filename)
{
list *plist = get_paths(filename);
char **labels = (char **)list_to_array(plist);
free_list(plist);
return labels;
}
void free_data(data d)
{
if(!d.shallow){
free_matrix(d.X);
free_matrix(d.y);
}else{
free(d.X.vals);
free(d.y.vals);
}
}
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
{
list *plist = get_paths(filename);
char **paths = (char **)list_to_array(plist);
int start = part*plist->size/total;
int end = (part+1)*plist->size/total;
data d = load_data_image_paths(paths+start, end-start, labels, k, h, w);
free_list_contents(plist);
free_list(plist);
free(paths);
return d;
}
data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w)
{
char **random_paths = calloc(n, sizeof(char*));
int i;
for(i = 0; i < n; ++i){
int index = rand()%m;
random_paths[i] = paths[index];
if(i == 0) printf("%s\n", paths[index]);
}
data d = load_data_image_paths(random_paths, n, labels, k, h, w);
free(random_paths);
return d;
}
data load_data_image_pathfile_random(char *filename, int n, char **labels, int k, int h, int w)
{
int i;
list *plist = get_paths(filename);
char **paths = (char **)list_to_array(plist);
char **random_paths = calloc(n, sizeof(char*));
for(i = 0; i < n; ++i){
int index = rand()%plist->size;
random_paths[i] = paths[index];
if(i == 0) printf("%s\n", paths[index]);
}
data d = load_data_image_paths(random_paths, n, labels, k, h, w);
free_list_contents(plist);
free_list(plist);
free(paths);
free(random_paths);
return d;
}
data load_categorical_data_csv(char *filename, int target, int k)
{
data d;
d.shallow = 0;
matrix X = csv_to_matrix(filename);
float *truth_1d = pop_column(&X, target);
float **truth = one_hot_encode(truth_1d, X.rows, k);
matrix y;
y.rows = X.rows;
y.cols = k;
y.vals = truth;
d.X = X;
d.y = y;
free(truth_1d);
return d;
}
data load_cifar10_data(char *filename)
{
data d;
d.shallow = 0;
long i,j;
matrix X = make_matrix(10000, 3072);
matrix y = make_matrix(10000, 10);
d.X = X;
d.y = y;
FILE *fp = fopen(filename, "rb");
if(!fp) file_error(filename);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class = bytes[0];
y.vals[i][class] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i][j] = (double)bytes[j+1];
}
}
translate_data_rows(d, -144);
scale_data_rows(d, 1./128);
//normalize_data_rows(d);
fclose(fp);
return d;
}
void get_random_batch(data d, int n, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = rand()%d.X.rows;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
void get_next_batch(data d, int n, int offset, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = offset + j;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
data load_all_cifar10()
{
data d;
d.shallow = 0;
int i,j,b;
matrix X = make_matrix(50000, 3072);
matrix y = make_matrix(50000, 10);
d.X = X;
d.y = y;
for(b = 0; b < 5; ++b){
char buff[256];
sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1);
FILE *fp = fopen(buff, "rb");
if(!fp) file_error(buff);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class = bytes[0];
y.vals[i+b*10000][class] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i+b*10000][j] = (double)bytes[j+1];
}
}
fclose(fp);
}
//normalize_data_rows(d);
translate_data_rows(d, -144);
scale_data_rows(d, 1./128);
return d;
}
void randomize_data(data d)
{
int i;
for(i = d.X.rows-1; i > 0; --i){
int index = rand()%i;
float *swap = d.X.vals[index];
d.X.vals[index] = d.X.vals[i];
d.X.vals[i] = swap;
swap = d.y.vals[index];
d.y.vals[index] = d.y.vals[i];
d.y.vals[i] = swap;
}
}
void scale_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
scale_array(d.X.vals[i], d.X.cols, s);
}
}
void translate_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
translate_array(d.X.vals[i], d.X.cols, s);
}
}
void normalize_data_rows(data d)
{
int i;
for(i = 0; i < d.X.rows; ++i){
normalize_array(d.X.vals[i], d.X.cols);
}
}
data *split_data(data d, int part, int total)
{
data *split = calloc(2, sizeof(data));
int i;
int start = part*d.X.rows/total;
int end = (part+1)*d.X.rows/total;
data train;
data test;
train.shallow = test.shallow = 1;
test.X.rows = test.y.rows = end-start;
train.X.rows = train.y.rows = d.X.rows - (end-start);
train.X.cols = test.X.cols = d.X.cols;
train.y.cols = test.y.cols = d.y.cols;
train.X.vals = calloc(train.X.rows, sizeof(float*));
test.X.vals = calloc(test.X.rows, sizeof(float*));
train.y.vals = calloc(train.y.rows, sizeof(float*));
test.y.vals = calloc(test.y.rows, sizeof(float*));
for(i = 0; i < start; ++i){
train.X.vals[i] = d.X.vals[i];
train.y.vals[i] = d.y.vals[i];
}
for(i = start; i < end; ++i){
test.X.vals[i-start] = d.X.vals[i];
test.y.vals[i-start] = d.y.vals[i];
}
for(i = end; i < d.X.rows; ++i){
train.X.vals[i-(end-start)] = d.X.vals[i];
train.y.vals[i-(end-start)] = d.y.vals[i];
}
split[0] = train;
split[1] = test;
return split;
}