mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
252 lines
7.9 KiB
C++
252 lines
7.9 KiB
C++
#include "darknet.h"
|
|
|
|
void train_cifar(char *cfgfile, char *weightfile)
|
|
{
|
|
srand(time(0));
|
|
float avg_loss = -1;
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
int classes = 10;
|
|
int N = 50000;
|
|
|
|
char **labels = get_labels("data/cifar/labels.txt");
|
|
int epoch = (*net->seen)/N;
|
|
data train = load_all_cifar10();
|
|
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
|
|
clock_t time=clock();
|
|
|
|
float loss = train_network_sgd(net, train, 1);
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.95 + loss*.05;
|
|
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
|
|
if(*net->seen/N > epoch){
|
|
epoch = *net->seen/N;
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
|
save_weights(net, buff);
|
|
}
|
|
if(get_current_batch(net)%100 == 0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
|
|
free_network(net);
|
|
free_ptrs((void**)labels, classes);
|
|
free(base);
|
|
free_data(train);
|
|
}
|
|
|
|
void train_cifar_distill(char *cfgfile, char *weightfile)
|
|
{
|
|
srand(time(0));
|
|
float avg_loss = -1;
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
int classes = 10;
|
|
int N = 50000;
|
|
|
|
char **labels = get_labels("data/cifar/labels.txt");
|
|
int epoch = (*net->seen)/N;
|
|
|
|
data train = load_all_cifar10();
|
|
matrix soft = csv_to_matrix("results/ensemble.csv");
|
|
|
|
float weight = .9;
|
|
scale_matrix(soft, weight);
|
|
scale_matrix(train.y, 1. - weight);
|
|
matrix_add_matrix(soft, train.y);
|
|
|
|
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
|
|
clock_t time=clock();
|
|
|
|
float loss = train_network_sgd(net, train, 1);
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.95 + loss*.05;
|
|
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
|
|
if(*net->seen/N > epoch){
|
|
epoch = *net->seen/N;
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
|
save_weights(net, buff);
|
|
}
|
|
if(get_current_batch(net)%100 == 0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
|
|
free_network(net);
|
|
free_ptrs((void**)labels, classes);
|
|
free(base);
|
|
free_data(train);
|
|
}
|
|
|
|
void test_cifar_multi(char *filename, char *weightfile)
|
|
{
|
|
network *net = load_network(filename, weightfile, 0);
|
|
set_batch_network(net, 1);
|
|
srand(time(0));
|
|
|
|
float avg_acc = 0;
|
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
|
|
|
int i;
|
|
for(i = 0; i < test.X.rows; ++i){
|
|
image im = float_to_image(32, 32, 3, test.X.vals[i]);
|
|
|
|
float pred[10] = {0};
|
|
|
|
float *p = network_predict(net, im.data);
|
|
axpy_cpu(10, 1, p, 1, pred, 1);
|
|
flip_image(im);
|
|
p = network_predict(net, im.data);
|
|
axpy_cpu(10, 1, p, 1, pred, 1);
|
|
|
|
int index = max_index(pred, 10);
|
|
int nclass = max_index(test.y.vals[i], 10);
|
|
if(index == nclass) avg_acc += 1;
|
|
free_image(im);
|
|
printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
|
|
}
|
|
}
|
|
|
|
void test_cifar(char *filename, char *weightfile)
|
|
{
|
|
network *net = load_network(filename, weightfile, 0);
|
|
srand(time(0));
|
|
|
|
clock_t time;
|
|
float avg_acc = 0;
|
|
float avg_top5 = 0;
|
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
|
|
|
time=clock();
|
|
|
|
float *acc = network_accuracies(net, test, 2);
|
|
avg_acc += acc[0];
|
|
avg_top5 += acc[1];
|
|
printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows);
|
|
free_data(test);
|
|
}
|
|
|
|
void extract_cifar()
|
|
{
|
|
char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
|
|
int i;
|
|
data train = load_all_cifar10();
|
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
|
for(i = 0; i < train.X.rows; ++i){
|
|
image im = float_to_image(32, 32, 3, train.X.vals[i]);
|
|
int nclass = max_index(train.y.vals[i], 10);
|
|
char buff[256];
|
|
sprintf(buff, "data/cifar/train/%d_%s",i,labels[nclass]);
|
|
save_image_options(im, buff, PNG, 0);
|
|
}
|
|
for(i = 0; i < test.X.rows; ++i){
|
|
image im = float_to_image(32, 32, 3, test.X.vals[i]);
|
|
int nclass = max_index(test.y.vals[i], 10);
|
|
char buff[256];
|
|
sprintf(buff, "data/cifar/test/%d_%s",i,labels[nclass]);
|
|
save_image_options(im, buff, PNG, 0);
|
|
}
|
|
}
|
|
|
|
void test_cifar_csv(char *filename, char *weightfile)
|
|
{
|
|
network *net = load_network(filename, weightfile, 0);
|
|
srand(time(0));
|
|
|
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
|
|
|
matrix pred = network_predict_data(net, test);
|
|
|
|
int i;
|
|
for(i = 0; i < test.X.rows; ++i){
|
|
image im = float_to_image(32, 32, 3, test.X.vals[i]);
|
|
flip_image(im);
|
|
}
|
|
matrix pred2 = network_predict_data(net, test);
|
|
scale_matrix(pred, .5);
|
|
scale_matrix(pred2, .5);
|
|
matrix_add_matrix(pred2, pred);
|
|
|
|
matrix_to_csv(pred);
|
|
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
|
|
free_data(test);
|
|
}
|
|
|
|
void test_cifar_csvtrain(char *cfg, char *weights)
|
|
{
|
|
network *net = load_network(cfg, weights, 0);
|
|
srand(time(0));
|
|
|
|
data test = load_all_cifar10();
|
|
|
|
matrix pred = network_predict_data(net, test);
|
|
|
|
int i;
|
|
for(i = 0; i < test.X.rows; ++i){
|
|
image im = float_to_image(32, 32, 3, test.X.vals[i]);
|
|
flip_image(im);
|
|
}
|
|
matrix pred2 = network_predict_data(net, test);
|
|
scale_matrix(pred, .5);
|
|
scale_matrix(pred2, .5);
|
|
matrix_add_matrix(pred2, pred);
|
|
|
|
matrix_to_csv(pred);
|
|
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
|
|
free_data(test);
|
|
}
|
|
|
|
void eval_cifar_csv()
|
|
{
|
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
|
|
|
matrix pred = csv_to_matrix("results/combined.csv");
|
|
fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
|
|
|
|
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
|
|
free_data(test);
|
|
free_matrix(pred);
|
|
}
|
|
|
|
|
|
void run_cifar(int argc, char **argv)
|
|
{
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
|
|
else if(0==strcmp(argv[2], "extract")) extract_cifar();
|
|
else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
|
|
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
|
|
else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
|
|
else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
|
|
else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
|
|
else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
|
|
}
|
|
|
|
|