darknet/examples/rnn.c
Joseph Redmon 56d69e73ab #covfefe
2017-06-01 20:31:13 -07:00

487 lines
13 KiB
C

#include "darknet.h"
typedef struct {
float *x;
float *y;
} float_pair;
int *read_tokenized_data(char *filename, size_t *read)
{
size_t size = 512;
size_t count = 0;
FILE *fp = fopen(filename, "r");
int *d = calloc(size, sizeof(int));
int n, one;
one = fscanf(fp, "%d", &n);
while(one == 1){
++count;
if(count > size){
size = size*2;
d = realloc(d, size*sizeof(int));
}
d[count-1] = n;
one = fscanf(fp, "%d", &n);
}
fclose(fp);
d = realloc(d, count*sizeof(int));
*read = count;
return d;
}
char **read_tokens(char *filename, size_t *read)
{
size_t size = 512;
size_t count = 0;
FILE *fp = fopen(filename, "r");
char **d = calloc(size, sizeof(char *));
char *line;
while((line=fgetl(fp)) != 0){
++count;
if(count > size){
size = size*2;
d = realloc(d, size*sizeof(char *));
}
d[count-1] = line;
}
fclose(fp);
d = realloc(d, count*sizeof(char *));
*read = count;
return d;
}
float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
{
float *x = calloc(batch * steps * characters, sizeof(float));
float *y = calloc(batch * steps * characters, sizeof(float));
int i,j;
for(i = 0; i < batch; ++i){
for(j = 0; j < steps; ++j){
int curr = tokens[(offsets[i])%len];
int next = tokens[(offsets[i] + 1)%len];
x[(j*batch + i)*characters + curr] = 1;
y[(j*batch + i)*characters + next] = 1;
offsets[i] = (offsets[i] + 1) % len;
if(curr >= characters || curr < 0 || next >= characters || next < 0){
error("Bad char");
}
}
}
float_pair p;
p.x = x;
p.y = y;
return p;
}
float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
{
float *x = calloc(batch * steps * characters, sizeof(float));
float *y = calloc(batch * steps * characters, sizeof(float));
int i,j;
for(i = 0; i < batch; ++i){
for(j = 0; j < steps; ++j){
unsigned char curr = text[(offsets[i])%len];
unsigned char next = text[(offsets[i] + 1)%len];
x[(j*batch + i)*characters + curr] = 1;
y[(j*batch + i)*characters + next] = 1;
offsets[i] = (offsets[i] + 1) % len;
if(curr > 255 || curr <= 0 || next > 255 || next <= 0){
/*text[(index+j+2)%len] = 0;
printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
printf("%s", text+index);
*/
error("Bad char");
}
}
}
float_pair p;
p.x = x;
p.y = y;
return p;
}
void reset_rnn_state(network net, int b)
{
int i;
for (i = 0; i < net.n; ++i) {
#ifdef GPU
layer l = net.layers[i];
if(l.state_gpu){
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
}
#endif
}
}
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
{
srand(time(0));
unsigned char *text = 0;
int *tokens = 0;
size_t size;
if(tokenized){
tokens = read_tokenized_data(filename, &size);
} else {
FILE *fp = fopen(filename, "rb");
fseek(fp, 0, SEEK_END);
size = ftell(fp);
fseek(fp, 0, SEEK_SET);
text = calloc(size+1, sizeof(char));
fread(text, 1, size, fp);
fclose(fp);
}
char *backup_directory = "/home/pjreddie/backup/";
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g, Inputs: %d\n", net.learning_rate, net.momentum, net.decay, inputs);
int batch = net.batch;
int steps = net.time_steps;
if(clear) *net.seen = 0;
int i = (*net.seen)/net.batch;
int streams = batch/steps;
size_t *offsets = calloc(streams, sizeof(size_t));
int j;
for(j = 0; j < streams; ++j){
offsets[j] = rand_size_t()%size;
}
clock_t time;
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
float_pair p;
if(tokenized){
p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
}else{
p = get_rnn_data(text, offsets, inputs, size, streams, steps);
}
memcpy(net.input, p.x, net.inputs*net.batch);
memcpy(net.truth, p.y, net.truths*net.batch);
float loss = train_network_datum(net) / (batch);
free(p.x);
free(p.y);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
int chars = get_current_batch(net)*batch;
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
for(j = 0; j < streams; ++j){
//printf("%d\n", j);
if(rand()%10 == 0){
//fprintf(stderr, "Reset\n");
offsets[j] = rand_size_t()%size;
reset_rnn_state(net, j);
}
}
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%10==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
void print_symbol(int n, char **tokens){
if(tokens){
printf("%s ", tokens[n]);
} else {
printf("%c", n);
}
}
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
{
char **tokens = 0;
if(token_file){
size_t n;
tokens = read_tokens(token_file, &n);
}
srand(rseed);
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
int i, j;
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
int c = 0;
int len = strlen(seed);
float *input = calloc(inputs, sizeof(float));
/*
fill_cpu(inputs, 0, input, 1);
for(i = 0; i < 10; ++i){
network_predict(net, input);
}
fill_cpu(inputs, 0, input, 1);
*/
for(i = 0; i < len-1; ++i){
c = seed[i];
input[c] = 1;
network_predict(net, input);
input[c] = 0;
print_symbol(c, tokens);
}
if(len) c = seed[len-1];
print_symbol(c, tokens);
for(i = 0; i < num; ++i){
input[c] = 1;
float *out = network_predict(net, input);
input[c] = 0;
for(j = 32; j < 127; ++j){
//printf("%d %c %f\n",j, j, out[j]);
}
for(j = 0; j < inputs; ++j){
if (out[j] < .0001) out[j] = 0;
}
c = sample_array(out, inputs);
print_symbol(c, tokens);
}
printf("\n");
}
void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
{
char **tokens = 0;
if(token_file){
size_t n;
tokens = read_tokens(token_file, &n);
}
srand(rseed);
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
int i, j;
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
int c = 0;
float *input = calloc(inputs, sizeof(float));
float *out = 0;
while((c = getc(stdin)) != EOF){
input[c] = 1;
out = network_predict(net, input);
input[c] = 0;
}
for(i = 0; i < num; ++i){
for(j = 0; j < inputs; ++j){
if (out[j] < .0001) out[j] = 0;
}
int next = sample_array(out, inputs);
if(c == '.' && next == '\n') break;
c = next;
print_symbol(c, tokens);
input[c] = 1;
out = network_predict(net, input);
input[c] = 0;
}
printf("\n");
}
void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
{
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
int count = 0;
int words = 1;
int c;
int len = strlen(seed);
float *input = calloc(inputs, sizeof(float));
int i;
for(i = 0; i < len; ++i){
c = seed[i];
input[(int)c] = 1;
network_predict(net, input);
input[(int)c] = 0;
}
float sum = 0;
c = getc(stdin);
float log2 = log(2);
int in = 0;
while(c != EOF){
int next = getc(stdin);
if(next == EOF) break;
if(next < 0 || next >= 255) error("Out of range character");
input[c] = 1;
float *out = network_predict(net, input);
input[c] = 0;
if(c == '.' && next == '\n') in = 0;
if(!in) {
if(c == '>' && next == '>'){
in = 1;
++words;
}
c = next;
continue;
}
++count;
sum += log(out[next])/log2;
c = next;
printf("%d %d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
}
}
void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
{
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
int count = 0;
int words = 1;
int c;
int len = strlen(seed);
float *input = calloc(inputs, sizeof(float));
int i;
for(i = 0; i < len; ++i){
c = seed[i];
input[(int)c] = 1;
network_predict(net, input);
input[(int)c] = 0;
}
float sum = 0;
c = getc(stdin);
float log2 = log(2);
while(c != EOF){
int next = getc(stdin);
if(next == EOF) break;
if(next < 0 || next >= 255) error("Out of range character");
++count;
if(next == ' ' || next == '\n' || next == '\t') ++words;
input[c] = 1;
float *out = network_predict(net, input);
input[c] = 0;
sum += log(out[next])/log2;
c = next;
printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
}
}
void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
{
char *base = basecfg(cfgfile);
fprintf(stderr, "%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int inputs = net.inputs;
int c;
int seed_len = strlen(seed);
float *input = calloc(inputs, sizeof(float));
int i;
char *line;
while((line=fgetl(stdin)) != 0){
reset_rnn_state(net, 0);
for(i = 0; i < seed_len; ++i){
c = seed[i];
input[(int)c] = 1;
network_predict(net, input);
input[(int)c] = 0;
}
strip(line);
int str_len = strlen(line);
for(i = 0; i < str_len; ++i){
c = line[i];
input[(int)c] = 1;
network_predict(net, input);
input[(int)c] = 0;
}
c = ' ';
input[(int)c] = 1;
network_predict(net, input);
input[(int)c] = 0;
layer l = net.layers[0];
#ifdef GPU
cuda_pull_array(l.output_gpu, l.output, l.outputs);
#endif
printf("%s", line);
for(i = 0; i < l.outputs; ++i){
printf(",%g", l.output[i]);
}
printf("\n");
}
}
void run_char_rnn(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
int len = find_int_arg(argc, argv, "-len", 1000);
float temp = find_float_arg(argc, argv, "-temp", .7);
int rseed = find_int_arg(argc, argv, "-srand", time(0));
int clear = find_arg(argc, argv, "-clear");
int tokenized = find_arg(argc, argv, "-tokenized");
char *tokens = find_char_arg(argc, argv, "-tokens", 0);
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens);
}