darknet/src/mini_blas.c
2014-01-28 16:28:42 -08:00

176 lines
5.0 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
void pm(int M, int N, float *A)
{
int i,j;
for(i =0 ; i < M; ++i){
for(j = 0; j < N; ++j){
printf("%10.6f, ", A[i*N+j]);
}
printf("\n");
}
printf("\n");
}
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float BETA,
float *C, int ldc)
{
// Assume beta = 1 LULZ
int i,j,k;
if(TB && !TA){
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
register float sum = 0;
for(k = 0; k < K; ++k){
sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
}
C[i*ldc+j] += sum;
}
}
}else if(TA && !TB){
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
register float A_PART = ALPHA*A[k*lda+i];
for(j = 0; j < N; ++j){
C[i*ldc+j] += A_PART*B[k*ldb+j];
}
}
}
}else{
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
register float A_PART = ALPHA*A[i*lda+k];
for(j = 0; j < N; ++j){
C[i*ldc+j] += A_PART*B[k*ldb+j];
}
}
}
}
}
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
{
int i;
int mc = c;
int mw = (size*size);
int mh = ((h-size)/stride+1)*((w-size)/stride+1);
int msize = mc*mw*mh;
for(i = 0; i < msize; ++i){
int channel = i/(mh*mw);
int block = (i%(mh*mw))/mw;
int position = i%mw;
int block_h = block/((w-size)/stride+1);
int block_w = block%((w-size)/stride+1);
int ph, pw, pc;
ph = position/size+block_h;
pw = position%size+block_w;
pc = channel;
matrix[i] = image[pc*h*w+ph*w+pw];
}
}
void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix)
{
int b,p;
int blocks = ((h-size)/stride+1)*((w-size)/stride+1);
int pixels = (size*size*c);
for(b = 0; b < blocks; ++b){
int block_h = b/((w-size)/stride+1);
int block_w = b%((w-size)/stride+1);
for(p = 0; p < pixels; ++p){
int ph, pw, pc;
int position = p%(size*size);
pc = p/(size*size);
ph = position/size+block_h;
pw = position%size+block_w;
matrix[b+p*blocks] = image[pc*h*w+ph*w+pw];
}
}
}
//From Berkeley Vision's Caffe!
void im2col_cpu(float* data_im, const int channels,
const int height, const int width, const int ksize, const int stride,
float* data_col)
{
int c,h,w;
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
for ( c = 0; c < channels_col; ++c) {
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int c_im = c / ksize / ksize;
for ( h = 0; h < height_col; ++h) {
for ( w = 0; w < width_col; ++w) {
data_col[(c * height_col + h) * width_col + w] =
data_im[(c_im * height + h * stride + h_offset) * width
+ w * stride + w_offset];
}
}
}
}
void col2im_cpu(float* data_col, const int channels,
const int height, const int width, const int ksize, const int stride,
float* data_im)
{
int c,h,w;
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
for ( c = 0; c < channels_col; ++c) {
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int c_im = c / ksize / ksize;
for ( h = 0; h < height_col; ++h) {
for ( w = 0; w < width_col; ++w) {
data_im[(c_im * height + h * stride + h_offset) * width
+ w * stride + w_offset]+= data_col[(c * height_col + h) * width_col + w];
}
}
}
}
float *random_matrix(int rows, int cols)
{
int i;
float *m = calloc(rows*cols, sizeof(float));
for(i = 0; i < rows*cols; ++i){
m[i] = (float)rand()/RAND_MAX;
}
return m;
}
void time_random_matrix(int TA, int TB, int m, int k, int n)
{
float *a = random_matrix(m,k);
float *b = random_matrix(k,n);
float *c = random_matrix(m,n);
int i;
clock_t start = clock(), end;
for(i = 0; i<1000; ++i){
gemm(TA,TB,m,n,k,1,a,k,b,n,1,c,n);
}
end = clock();
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (double)(end-start)/CLOCKS_PER_SEC);
}
void test_blas()
{
time_random_matrix(0,0,100,100,100);
time_random_matrix(1,0,100,100,100);
time_random_matrix(0,1,100,100,100);
time_random_matrix(0,1,1000,100,100);
time_random_matrix(1,0,1000,100,100);
}