mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
361 lines
12 KiB
C
361 lines
12 KiB
C
#include "darknet.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
|
|
|
|
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
|
|
|
void train_coco(char *cfgfile, char *weightfile)
|
|
{
|
|
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
|
|
//char *train_images = "/home/pjreddie/data/coco/train.txt";
|
|
char *train_images = "data/coco.trainval.txt";
|
|
//char *train_images = "data/bags.train.list";
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
float avg_loss = -1;
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
int imgs = net->batch*net->subdivisions;
|
|
int i = *net->seen/imgs;
|
|
data train, buffer;
|
|
|
|
|
|
layer l = net->layers[net->n - 1];
|
|
|
|
int side = l.side;
|
|
int classes = l.classes;
|
|
float jitter = l.jitter;
|
|
|
|
list *plist = get_paths(train_images);
|
|
//int N = plist->size;
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
load_args args = {0};
|
|
args.w = net->w;
|
|
args.h = net->h;
|
|
args.paths = paths;
|
|
args.n = imgs;
|
|
args.m = plist->size;
|
|
args.classes = classes;
|
|
args.jitter = jitter;
|
|
args.num_boxes = side;
|
|
args.d = &buffer;
|
|
args.type = REGION_DATA;
|
|
|
|
args.angle = net->angle;
|
|
args.exposure = net->exposure;
|
|
args.saturation = net->saturation;
|
|
args.hue = net->hue;
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
|
clock_t time;
|
|
//while(i*imgs < N*120){
|
|
while(get_current_batch(net) < net->max_batches){
|
|
i += 1;
|
|
time=clock();
|
|
pthread_join(load_thread, 0);
|
|
train = buffer;
|
|
load_thread = load_data_in_thread(args);
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
/*
|
|
image im = float_to_image(net->w, net->h, 3, train.X.vals[113]);
|
|
image copy = copy_image(im);
|
|
draw_coco(copy, train.y.vals[113], 7, "truth");
|
|
cvWaitKey(0);
|
|
free_image(copy);
|
|
*/
|
|
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
if (avg_loss < 0) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
|
if(i%1000==0 || (i < 1000 && i%100 == 0)){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
save_weights(net, buff);
|
|
}
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
save_weights(net, buff);
|
|
}
|
|
free_data(train);
|
|
}
|
|
char buff[256];
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
save_weights(net, buff);
|
|
}
|
|
|
|
static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h)
|
|
{
|
|
int i, j;
|
|
for(i = 0; i < num_boxes; ++i){
|
|
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
|
|
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
|
|
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
|
|
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
|
|
|
|
if (xmin < 0) xmin = 0;
|
|
if (ymin < 0) ymin = 0;
|
|
if (xmax > w) xmax = w;
|
|
if (ymax > h) ymax = h;
|
|
|
|
float bx = xmin;
|
|
float by = ymin;
|
|
float bw = xmax - xmin;
|
|
float bh = ymax - ymin;
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
int get_coco_image_id(char *filename)
|
|
{
|
|
char *p = strrchr(filename, '_');
|
|
return atoi(p+1);
|
|
}
|
|
|
|
void validate_coco(char *cfg, char *weights)
|
|
{
|
|
network *net = load_network(cfg, weights, 0);
|
|
set_batch_network(net, 1);
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
srand(time(0));
|
|
|
|
char *base = "results/";
|
|
list *plist = get_paths("data/coco_val_5k.list");
|
|
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
|
|
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
layer l = net->layers[net->n-1];
|
|
int classes = l.classes;
|
|
|
|
char buff[1024];
|
|
snprintf(buff, 1024, "%s/coco_results.json", base);
|
|
FILE *fp = fopen(buff, "w");
|
|
fprintf(fp, "[\n");
|
|
|
|
detection *dets = make_network_boxes(net, 0);
|
|
|
|
int m = plist->size;
|
|
int i=0;
|
|
int t;
|
|
|
|
float thresh = .01;
|
|
int nms = 1;
|
|
float iou_thresh = .5;
|
|
|
|
int nthreads = 8;
|
|
image *val = calloc(nthreads, sizeof(image));
|
|
image *val_resized = calloc(nthreads, sizeof(image));
|
|
image *buf = calloc(nthreads, sizeof(image));
|
|
image *buf_resized = calloc(nthreads, sizeof(image));
|
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
|
|
|
load_args args = {0};
|
|
args.w = net->w;
|
|
args.h = net->h;
|
|
args.type = IMAGE_DATA;
|
|
|
|
for(t = 0; t < nthreads; ++t){
|
|
args.path = paths[i+t];
|
|
args.im = &buf[t];
|
|
args.resized = &buf_resized[t];
|
|
thr[t] = load_data_in_thread(args);
|
|
}
|
|
time_t start = time(0);
|
|
for(i = nthreads; i < m+nthreads; i += nthreads){
|
|
fprintf(stderr, "%d\n", i);
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
pthread_join(thr[t], 0);
|
|
val[t] = buf[t];
|
|
val_resized[t] = buf_resized[t];
|
|
}
|
|
for(t = 0; t < nthreads && i+t < m; ++t){
|
|
args.path = paths[i+t];
|
|
args.im = &buf[t];
|
|
args.resized = &buf_resized[t];
|
|
thr[t] = load_data_in_thread(args);
|
|
}
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
char *path = paths[i+t-nthreads];
|
|
int image_id = get_coco_image_id(path);
|
|
float *X = val_resized[t].data;
|
|
network_predict(net, X);
|
|
int w = val[t].w;
|
|
int h = val[t].h;
|
|
fill_network_boxes(net, w, h, thresh, 0, 0, 0, dets);
|
|
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
|
|
print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h);
|
|
free_image(val[t]);
|
|
free_image(val_resized[t]);
|
|
}
|
|
}
|
|
fseek(fp, -2, SEEK_CUR);
|
|
fprintf(fp, "\n]\n");
|
|
fclose(fp);
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
|
}
|
|
|
|
void validate_coco_recall(char *cfgfile, char *weightfile)
|
|
{
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
set_batch_network(net, 1);
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
srand(time(0));
|
|
|
|
char *base = "results/comp4_det_test_";
|
|
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
layer l = net->layers[net->n-1];
|
|
int classes = l.classes;
|
|
int side = l.side;
|
|
|
|
int j, k;
|
|
FILE **fps = calloc(classes, sizeof(FILE *));
|
|
for(j = 0; j < classes; ++j){
|
|
char buff[1024];
|
|
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
|
|
fps[j] = fopen(buff, "w");
|
|
}
|
|
detection *dets = make_network_boxes(net, 0);
|
|
|
|
int m = plist->size;
|
|
int i=0;
|
|
|
|
float thresh = .001;
|
|
int nms = 0;
|
|
float iou_thresh = .5;
|
|
|
|
int total = 0;
|
|
int correct = 0;
|
|
int proposals = 0;
|
|
float avg_iou = 0;
|
|
|
|
for(i = 0; i < m; ++i){
|
|
char *path = paths[i];
|
|
image orig = load_image_color(path, 0, 0);
|
|
image sized = resize_image(orig, net->w, net->h);
|
|
char *id = basecfg(path);
|
|
network_predict(net, sized.data);
|
|
|
|
fill_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, dets);
|
|
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
|
|
|
|
char labelpath[4096];
|
|
find_replace(path, "images", "labels", labelpath);
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
|
|
|
int num_labels = 0;
|
|
box_label *truth = read_boxes(labelpath, &num_labels);
|
|
for(k = 0; k < side*side*l.n; ++k){
|
|
if(dets[k].objectness > thresh){
|
|
++proposals;
|
|
}
|
|
}
|
|
for (j = 0; j < num_labels; ++j) {
|
|
++total;
|
|
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
|
float best_iou = 0;
|
|
for(k = 0; k < side*side*l.n; ++k){
|
|
float iou = box_iou(dets[k].bbox, t);
|
|
if(dets[k].objectness > thresh && iou > best_iou){
|
|
best_iou = iou;
|
|
}
|
|
}
|
|
avg_iou += best_iou;
|
|
if(best_iou > iou_thresh){
|
|
++correct;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
|
|
free(id);
|
|
free_image(orig);
|
|
free_image(sized);
|
|
}
|
|
}
|
|
|
|
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
|
{
|
|
image **alphabet = load_alphabet();
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
layer l = net->layers[net->n-1];
|
|
set_batch_network(net, 1);
|
|
srand(2222222);
|
|
float nms = .4;
|
|
clock_t time;
|
|
char buff[256];
|
|
char *input = buff;
|
|
detection *dets = make_network_boxes(net, 0);
|
|
while(1){
|
|
if(filename){
|
|
strncpy(input, filename, 256);
|
|
} else {
|
|
printf("Enter Image Path: ");
|
|
fflush(stdout);
|
|
input = fgets(input, 256, stdin);
|
|
if(!input) return;
|
|
strtok(input, "\n");
|
|
}
|
|
image im = load_image_color(input,0,0);
|
|
image sized = resize_image(im, net->w, net->h);
|
|
float *X = sized.data;
|
|
time=clock();
|
|
network_predict(net, X);
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
|
|
fill_network_boxes(net, 1, 1, thresh, 0, 0, 0, dets);
|
|
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
|
|
|
|
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
|
|
save_image(im, "prediction");
|
|
show_image(im, "predictions");
|
|
free_image(im);
|
|
free_image(sized);
|
|
#ifdef OPENCV
|
|
cvWaitKey(0);
|
|
cvDestroyAllWindows();
|
|
#endif
|
|
if (filename) break;
|
|
}
|
|
}
|
|
|
|
void run_coco(int argc, char **argv)
|
|
{
|
|
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
|
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
|
int frame_skip = find_int_arg(argc, argv, "-s", 0);
|
|
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
char *filename = (argc > 5) ? argv[5]: 0;
|
|
int avg = find_int_arg(argc, argv, "-avg", 1);
|
|
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
|
|
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
|
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
|
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
|
|
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix, avg, .5, 0,0,0,0);
|
|
}
|