mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
450 lines
14 KiB
C
450 lines
14 KiB
C
#include "convolutional_layer.h"
|
|
#include "utils.h"
|
|
#include "mini_blas.h"
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
int convolutional_out_height(convolutional_layer layer)
|
|
{
|
|
int h = layer.h;
|
|
if (!layer.pad) h -= layer.size;
|
|
else h -= 1;
|
|
return h/layer.stride + 1;
|
|
}
|
|
|
|
int convolutional_out_width(convolutional_layer layer)
|
|
{
|
|
int w = layer.w;
|
|
if (!layer.pad) w -= layer.size;
|
|
else w -= 1;
|
|
return w/layer.stride + 1;
|
|
}
|
|
|
|
image get_convolutional_image(convolutional_layer layer)
|
|
{
|
|
int h,w,c;
|
|
h = convolutional_out_height(layer);
|
|
w = convolutional_out_width(layer);
|
|
c = layer.n;
|
|
return float_to_image(h,w,c,layer.output);
|
|
}
|
|
|
|
image get_convolutional_delta(convolutional_layer layer)
|
|
{
|
|
int h,w,c;
|
|
h = convolutional_out_height(layer);
|
|
w = convolutional_out_width(layer);
|
|
c = layer.n;
|
|
return float_to_image(h,w,c,layer.delta);
|
|
}
|
|
|
|
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
|
|
{
|
|
int i;
|
|
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
|
|
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
|
|
|
layer->learning_rate = learning_rate;
|
|
layer->momentum = momentum;
|
|
layer->decay = decay;
|
|
|
|
layer->h = h;
|
|
layer->w = w;
|
|
layer->c = c;
|
|
layer->n = n;
|
|
layer->batch = batch;
|
|
layer->stride = stride;
|
|
layer->size = size;
|
|
layer->pad = pad;
|
|
|
|
layer->filters = calloc(c*n*size*size, sizeof(float));
|
|
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
|
layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
|
|
|
|
layer->biases = calloc(n, sizeof(float));
|
|
layer->bias_updates = calloc(n, sizeof(float));
|
|
layer->bias_momentum = calloc(n, sizeof(float));
|
|
float scale = 1./(size*size*c);
|
|
scale = .05;
|
|
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
|
|
for(i = 0; i < n; ++i){
|
|
//layer->biases[i] = rand_normal()*scale + scale;
|
|
layer->biases[i] = .5;
|
|
}
|
|
int out_h = convolutional_out_height(*layer);
|
|
int out_w = convolutional_out_width(*layer);
|
|
|
|
layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
|
|
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
|
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
|
#ifdef GPU
|
|
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
|
|
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
|
|
layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
|
|
|
|
layer->biases_cl = cl_make_array(layer->biases, n);
|
|
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
|
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
|
|
|
|
layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
|
|
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
|
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
|
#endif
|
|
layer->activation = activation;
|
|
|
|
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
|
|
|
return layer;
|
|
}
|
|
|
|
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
|
|
{
|
|
layer->h = h;
|
|
layer->w = w;
|
|
layer->c = c;
|
|
int out_h = convolutional_out_height(*layer);
|
|
int out_w = convolutional_out_width(*layer);
|
|
|
|
layer->col_image = realloc(layer->col_image,
|
|
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
|
layer->output = realloc(layer->output,
|
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
|
layer->delta = realloc(layer->delta,
|
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
|
}
|
|
|
|
void bias_output(const convolutional_layer layer)
|
|
{
|
|
int i,j,b;
|
|
int out_h = convolutional_out_height(layer);
|
|
int out_w = convolutional_out_width(layer);
|
|
for(b = 0; b < layer.batch; ++b){
|
|
for(i = 0; i < layer.n; ++i){
|
|
for(j = 0; j < out_h*out_w; ++j){
|
|
layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
|
{
|
|
int out_h = convolutional_out_height(layer);
|
|
int out_w = convolutional_out_width(layer);
|
|
int i;
|
|
|
|
bias_output(layer);
|
|
|
|
int m = layer.n;
|
|
int k = layer.size*layer.size*layer.c;
|
|
int n = out_h*out_w;
|
|
|
|
float *a = layer.filters;
|
|
float *b = layer.col_image;
|
|
float *c = layer.output;
|
|
|
|
im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w,
|
|
layer.size, layer.stride, layer.pad, b);
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
|
b += k*n;
|
|
c += n*m;
|
|
}
|
|
activate_array(layer.output, m*n*layer.batch, layer.activation);
|
|
}
|
|
|
|
void learn_bias_convolutional_layer(convolutional_layer layer)
|
|
{
|
|
int i,b;
|
|
int size = convolutional_out_height(layer)
|
|
*convolutional_out_width(layer);
|
|
for(b = 0; b < layer.batch; ++b){
|
|
for(i = 0; i < layer.n; ++i){
|
|
layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
|
{
|
|
int i;
|
|
int m = layer.n;
|
|
int n = layer.size*layer.size*layer.c;
|
|
int k = convolutional_out_height(layer)*
|
|
convolutional_out_width(layer);
|
|
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
|
learn_bias_convolutional_layer(layer);
|
|
|
|
float *a = layer.delta;
|
|
float *b = layer.col_image;
|
|
float *c = layer.filter_updates;
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
|
a += m*k;
|
|
b += k*n;
|
|
}
|
|
|
|
if(delta){
|
|
m = layer.size*layer.size*layer.c;
|
|
k = layer.n;
|
|
n = convolutional_out_height(layer)*
|
|
convolutional_out_width(layer);
|
|
|
|
a = layer.filters;
|
|
b = layer.delta;
|
|
c = layer.col_image;
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
|
b += k*n;
|
|
c += m*n;
|
|
}
|
|
|
|
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
|
|
|
col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
|
}
|
|
}
|
|
|
|
void update_convolutional_layer(convolutional_layer layer)
|
|
{
|
|
int size = layer.size*layer.size*layer.c*layer.n;
|
|
axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
|
scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
|
|
|
|
scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
|
|
axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
|
|
scal_cpu(size, layer.momentum, layer.filter_updates, 1);
|
|
}
|
|
|
|
|
|
image get_convolutional_filter(convolutional_layer layer, int i)
|
|
{
|
|
int h = layer.size;
|
|
int w = layer.size;
|
|
int c = layer.c;
|
|
return float_to_image(h,w,c,layer.filters+i*h*w*c);
|
|
}
|
|
|
|
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
|
|
{
|
|
image *filters = calloc(layer.n, sizeof(image));
|
|
int i,j,k,c;
|
|
if(!prev_filters){
|
|
for(i = 0; i < layer.n; ++i){
|
|
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
|
}
|
|
}
|
|
else{
|
|
image base = prev_filters[0];
|
|
for(i = 0; i < layer.n; ++i){
|
|
image filter = get_convolutional_filter(layer, i);
|
|
filters[i] = make_image(base.h, base.w, base.c);
|
|
for(j = 0; j < layer.size; ++j){
|
|
for(k = 0; k < layer.size; ++k){
|
|
for(c = 0; c < layer.c; ++c){
|
|
float weight = get_pixel(filter, j, k, c);
|
|
image prev_filter = copy_image(prev_filters[c]);
|
|
scale_image(prev_filter, weight);
|
|
add_into_image(prev_filter, filters[i], 0,0);
|
|
free_image(prev_filter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return filters;
|
|
}
|
|
|
|
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
|
{
|
|
image *single_filters = weighted_sum_filters(layer, 0);
|
|
show_images(single_filters, layer.n, window);
|
|
|
|
image delta = get_convolutional_image(layer);
|
|
image dc = collapse_image_layers(delta, 1);
|
|
char buff[256];
|
|
sprintf(buff, "%s: Output", window);
|
|
//show_image(dc, buff);
|
|
//save_image(dc, buff);
|
|
free_image(dc);
|
|
return single_filters;
|
|
}
|
|
|
|
#ifdef GPU
|
|
|
|
cl_kernel get_convolutional_learn_bias_kernel()
|
|
{
|
|
static int init = 0;
|
|
static cl_kernel kernel;
|
|
if(!init){
|
|
kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
|
|
init = 1;
|
|
}
|
|
return kernel;
|
|
}
|
|
|
|
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
|
{
|
|
int size = convolutional_out_height(layer) * convolutional_out_width(layer);
|
|
|
|
cl_setup();
|
|
cl_kernel kernel = get_convolutional_learn_bias_kernel();
|
|
cl_command_queue queue = cl.queue;
|
|
|
|
cl_uint i = 0;
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
|
|
check_error(cl);
|
|
|
|
const size_t global_size[] = {layer.n};
|
|
|
|
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
|
check_error(cl);
|
|
}
|
|
|
|
cl_kernel get_convolutional_bias_kernel()
|
|
{
|
|
static int init = 0;
|
|
static cl_kernel kernel;
|
|
if(!init){
|
|
kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
|
|
init = 1;
|
|
}
|
|
return kernel;
|
|
}
|
|
|
|
void bias_output_gpu(const convolutional_layer layer)
|
|
{
|
|
int out_h = convolutional_out_height(layer);
|
|
int out_w = convolutional_out_width(layer);
|
|
int size = out_h*out_w;
|
|
|
|
cl_setup();
|
|
cl_kernel kernel = get_convolutional_bias_kernel();
|
|
cl_command_queue queue = cl.queue;
|
|
|
|
cl_uint i = 0;
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
|
check_error(cl);
|
|
|
|
const size_t global_size[] = {layer.n*size, layer.batch};
|
|
|
|
cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
|
|
check_error(cl);
|
|
}
|
|
|
|
//#define TIMEIT
|
|
|
|
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
|
|
{
|
|
int i;
|
|
int m = layer.n;
|
|
int k = layer.size*layer.size*layer.c;
|
|
int n = convolutional_out_height(layer)*
|
|
convolutional_out_width(layer);
|
|
|
|
bias_output_gpu(layer);
|
|
|
|
#ifdef TIMEIT
|
|
clock_t time = clock();
|
|
printf("Forward\n");
|
|
#endif
|
|
|
|
im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
|
|
|
#ifdef TIMEIT
|
|
clFinish(cl.queue);
|
|
printf("Im2col %f\n", sec(clock()-time));
|
|
time = clock();
|
|
#endif
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
cl_mem a = layer.filters_cl;
|
|
cl_mem b = layer.col_image_cl;
|
|
cl_mem c = layer.output_cl;
|
|
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
|
|
}
|
|
#ifdef TIMEIT
|
|
clFinish(cl.queue);
|
|
printf("Gemm %f\n", sec(clock()-time));
|
|
#endif
|
|
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
|
|
#ifdef TIMEIT
|
|
cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
|
|
#endif
|
|
}
|
|
|
|
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
|
|
{
|
|
int i;
|
|
int m = layer.n;
|
|
int n = layer.size*layer.size*layer.c;
|
|
int k = convolutional_out_height(layer)*
|
|
convolutional_out_width(layer);
|
|
gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
|
|
learn_bias_convolutional_layer_ongpu(layer);
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
cl_mem a = layer.delta_cl;
|
|
cl_mem b = layer.col_image_cl;
|
|
cl_mem c = layer.filter_updates_cl;
|
|
|
|
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
|
|
}
|
|
|
|
if(delta_cl){
|
|
m = layer.size*layer.size*layer.c;
|
|
k = layer.n;
|
|
n = convolutional_out_height(layer)*
|
|
convolutional_out_width(layer);
|
|
|
|
for(i = 0; i < layer.batch; ++i){
|
|
cl_mem a = layer.filters_cl;
|
|
cl_mem b = layer.delta_cl;
|
|
cl_mem c = layer.col_image_cl;
|
|
|
|
gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
|
|
}
|
|
|
|
scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
|
|
col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
|
}
|
|
}
|
|
|
|
void pull_convolutional_layer(convolutional_layer layer)
|
|
{
|
|
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
|
cl_read_array(layer.biases_cl, layer.biases, layer.n);
|
|
}
|
|
|
|
void push_convolutional_layer(convolutional_layer layer)
|
|
{
|
|
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
|
cl_write_array(layer.biases_cl, layer.biases, layer.n);
|
|
}
|
|
|
|
void update_convolutional_layer_gpu(convolutional_layer layer)
|
|
{
|
|
int size = layer.size*layer.size*layer.c*layer.n;
|
|
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
|
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
|
|
|
|
scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
|
|
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
|
|
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
|
|
pull_convolutional_layer(layer);
|
|
}
|
|
|
|
|
|
#endif
|
|
|