darknet/src/convolutional_layer.c
2014-12-03 08:48:07 -08:00

450 lines
14 KiB
C

#include "convolutional_layer.h"
#include "utils.h"
#include "mini_blas.h"
#include <stdio.h>
#include <time.h>
int convolutional_out_height(convolutional_layer layer)
{
int h = layer.h;
if (!layer.pad) h -= layer.size;
else h -= 1;
return h/layer.stride + 1;
}
int convolutional_out_width(convolutional_layer layer)
{
int w = layer.w;
if (!layer.pad) w -= layer.size;
else w -= 1;
return w/layer.stride + 1;
}
image get_convolutional_image(convolutional_layer layer)
{
int h,w,c;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(h,w,c,layer.output);
}
image get_convolutional_delta(convolutional_layer layer)
{
int h,w,c;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(h,w,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
{
int i;
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->h = h;
layer->w = w;
layer->c = c;
layer->n = n;
layer->batch = batch;
layer->stride = stride;
layer->size = size;
layer->pad = pad;
layer->filters = calloc(c*n*size*size, sizeof(float));
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
layer->biases = calloc(n, sizeof(float));
layer->bias_updates = calloc(n, sizeof(float));
layer->bias_momentum = calloc(n, sizeof(float));
float scale = 1./(size*size*c);
scale = .05;
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
for(i = 0; i < n; ++i){
//layer->biases[i] = rand_normal()*scale + scale;
layer->biases[i] = .5;
}
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
#ifdef GPU
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
layer->biases_cl = cl_make_array(layer->biases, n);
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
#endif
layer->activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
return layer;
}
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
{
layer->h = h;
layer->w = w;
layer->c = c;
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
layer->col_image = realloc(layer->col_image,
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
layer->output = realloc(layer->output,
layer->batch*out_h * out_w * layer->n*sizeof(float));
layer->delta = realloc(layer->delta,
layer->batch*out_h * out_w * layer->n*sizeof(float));
}
void bias_output(const convolutional_layer layer)
{
int i,j,b;
int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer);
for(b = 0; b < layer.batch; ++b){
for(i = 0; i < layer.n; ++i){
for(j = 0; j < out_h*out_w; ++j){
layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
}
}
}
}
void forward_convolutional_layer(const convolutional_layer layer, float *in)
{
int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer);
int i;
bias_output(layer);
int m = layer.n;
int k = layer.size*layer.size*layer.c;
int n = out_h*out_w;
float *a = layer.filters;
float *b = layer.col_image;
float *c = layer.output;
im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w,
layer.size, layer.stride, layer.pad, b);
for(i = 0; i < layer.batch; ++i){
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
b += k*n;
c += n*m;
}
activate_array(layer.output, m*n*layer.batch, layer.activation);
}
void learn_bias_convolutional_layer(convolutional_layer layer)
{
int i,b;
int size = convolutional_out_height(layer)
*convolutional_out_width(layer);
for(b = 0; b < layer.batch; ++b){
for(i = 0; i < layer.n; ++i){
layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
}
}
}
void backward_convolutional_layer(convolutional_layer layer, float *delta)
{
int i;
int m = layer.n;
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
learn_bias_convolutional_layer(layer);
float *a = layer.delta;
float *b = layer.col_image;
float *c = layer.filter_updates;
for(i = 0; i < layer.batch; ++i){
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
a += m*k;
b += k*n;
}
if(delta){
m = layer.size*layer.size*layer.c;
k = layer.n;
n = convolutional_out_height(layer)*
convolutional_out_width(layer);
a = layer.filters;
b = layer.delta;
c = layer.col_image;
for(i = 0; i < layer.batch; ++i){
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
b += k*n;
c += m*n;
}
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
}
}
void update_convolutional_layer(convolutional_layer layer)
{
int size = layer.size*layer.size*layer.c*layer.n;
axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
scal_cpu(size, layer.momentum, layer.filter_updates, 1);
}
image get_convolutional_filter(convolutional_layer layer, int i)
{
int h = layer.size;
int w = layer.size;
int c = layer.c;
return float_to_image(h,w,c,layer.filters+i*h*w*c);
}
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
{
image *filters = calloc(layer.n, sizeof(image));
int i,j,k,c;
if(!prev_filters){
for(i = 0; i < layer.n; ++i){
filters[i] = copy_image(get_convolutional_filter(layer, i));
}
}
else{
image base = prev_filters[0];
for(i = 0; i < layer.n; ++i){
image filter = get_convolutional_filter(layer, i);
filters[i] = make_image(base.h, base.w, base.c);
for(j = 0; j < layer.size; ++j){
for(k = 0; k < layer.size; ++k){
for(c = 0; c < layer.c; ++c){
float weight = get_pixel(filter, j, k, c);
image prev_filter = copy_image(prev_filters[c]);
scale_image(prev_filter, weight);
add_into_image(prev_filter, filters[i], 0,0);
free_image(prev_filter);
}
}
}
}
}
return filters;
}
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
{
image *single_filters = weighted_sum_filters(layer, 0);
show_images(single_filters, layer.n, window);
image delta = get_convolutional_image(layer);
image dc = collapse_image_layers(delta, 1);
char buff[256];
sprintf(buff, "%s: Output", window);
//show_image(dc, buff);
//save_image(dc, buff);
free_image(dc);
return single_filters;
}
#ifdef GPU
cl_kernel get_convolutional_learn_bias_kernel()
{
static int init = 0;
static cl_kernel kernel;
if(!init){
kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
init = 1;
}
return kernel;
}
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
{
int size = convolutional_out_height(layer) * convolutional_out_width(layer);
cl_setup();
cl_kernel kernel = get_convolutional_learn_bias_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
check_error(cl);
const size_t global_size[] = {layer.n};
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
check_error(cl);
}
cl_kernel get_convolutional_bias_kernel()
{
static int init = 0;
static cl_kernel kernel;
if(!init){
kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
init = 1;
}
return kernel;
}
void bias_output_gpu(const convolutional_layer layer)
{
int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer);
int size = out_h*out_w;
cl_setup();
cl_kernel kernel = get_convolutional_bias_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
check_error(cl);
const size_t global_size[] = {layer.n*size, layer.batch};
cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
check_error(cl);
}
//#define TIMEIT
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
{
int i;
int m = layer.n;
int k = layer.size*layer.size*layer.c;
int n = convolutional_out_height(layer)*
convolutional_out_width(layer);
bias_output_gpu(layer);
#ifdef TIMEIT
clock_t time = clock();
printf("Forward\n");
#endif
im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
#ifdef TIMEIT
clFinish(cl.queue);
printf("Im2col %f\n", sec(clock()-time));
time = clock();
#endif
for(i = 0; i < layer.batch; ++i){
cl_mem a = layer.filters_cl;
cl_mem b = layer.col_image_cl;
cl_mem c = layer.output_cl;
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
}
#ifdef TIMEIT
clFinish(cl.queue);
printf("Gemm %f\n", sec(clock()-time));
#endif
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
#ifdef TIMEIT
cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
#endif
}
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
{
int i;
int m = layer.n;
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
learn_bias_convolutional_layer_ongpu(layer);
for(i = 0; i < layer.batch; ++i){
cl_mem a = layer.delta_cl;
cl_mem b = layer.col_image_cl;
cl_mem c = layer.filter_updates_cl;
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
}
if(delta_cl){
m = layer.size*layer.size*layer.c;
k = layer.n;
n = convolutional_out_height(layer)*
convolutional_out_width(layer);
for(i = 0; i < layer.batch; ++i){
cl_mem a = layer.filters_cl;
cl_mem b = layer.delta_cl;
cl_mem c = layer.col_image_cl;
gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
}
scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
}
}
void pull_convolutional_layer(convolutional_layer layer)
{
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
cl_read_array(layer.biases_cl, layer.biases, layer.n);
}
void push_convolutional_layer(convolutional_layer layer)
{
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
cl_write_array(layer.biases_cl, layer.biases, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)
{
int size = layer.size*layer.size*layer.c*layer.n;
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
pull_convolutional_layer(layer);
}
#endif