mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
801 lines
19 KiB
C
801 lines
19 KiB
C
#ifndef DARKNET_API
|
|
#define DARKNET_API
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <pthread.h>
|
|
|
|
#define SECRET_NUM -1234
|
|
extern int gpu_index;
|
|
|
|
#ifdef GPU
|
|
#define BLOCK 512
|
|
|
|
#include "cuda_runtime.h"
|
|
#include "curand.h"
|
|
#include "cublas_v2.h"
|
|
|
|
#ifdef CUDNN
|
|
#include "cudnn.h"
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef __cplusplus
|
|
#ifdef OPENCV
|
|
#include "opencv2/highgui/highgui_c.h"
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
#include "opencv2/core/version.hpp"
|
|
#if CV_MAJOR_VERSION == 3
|
|
#include "opencv2/videoio/videoio_c.h"
|
|
#include "opencv2/imgcodecs/imgcodecs_c.h"
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
typedef struct{
|
|
int classes;
|
|
char **names;
|
|
} metadata;
|
|
|
|
metadata get_metadata(char *file);
|
|
|
|
typedef struct{
|
|
int *leaf;
|
|
int n;
|
|
int *parent;
|
|
int *child;
|
|
int *group;
|
|
char **name;
|
|
|
|
int groups;
|
|
int *group_size;
|
|
int *group_offset;
|
|
} tree;
|
|
tree *read_tree(char *filename);
|
|
|
|
typedef enum{
|
|
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN
|
|
} ACTIVATION;
|
|
|
|
typedef enum{
|
|
MULT, ADD, SUB, DIV
|
|
} BINARY_ACTIVATION;
|
|
|
|
typedef enum {
|
|
CONVOLUTIONAL,
|
|
DECONVOLUTIONAL,
|
|
CONNECTED,
|
|
MAXPOOL,
|
|
SOFTMAX,
|
|
DETECTION,
|
|
DROPOUT,
|
|
CROP,
|
|
ROUTE,
|
|
COST,
|
|
NORMALIZATION,
|
|
AVGPOOL,
|
|
LOCAL,
|
|
SHORTCUT,
|
|
ACTIVE,
|
|
RNN,
|
|
GRU,
|
|
LSTM,
|
|
CRNN,
|
|
BATCHNORM,
|
|
NETWORK,
|
|
XNOR,
|
|
REGION,
|
|
REORG,
|
|
UPSAMPLE,
|
|
LOGXENT,
|
|
L2NORM,
|
|
BLANK
|
|
} LAYER_TYPE;
|
|
|
|
typedef enum{
|
|
SSE, MASKED, L1, SEG, SMOOTH,WGAN
|
|
} COST_TYPE;
|
|
|
|
typedef struct{
|
|
int batch;
|
|
float learning_rate;
|
|
float momentum;
|
|
float decay;
|
|
int adam;
|
|
float B1;
|
|
float B2;
|
|
float eps;
|
|
int t;
|
|
} update_args;
|
|
|
|
struct network;
|
|
typedef struct network network;
|
|
|
|
struct layer;
|
|
typedef struct layer layer;
|
|
|
|
struct layer{
|
|
LAYER_TYPE type;
|
|
ACTIVATION activation;
|
|
COST_TYPE cost_type;
|
|
void (*forward) (struct layer, struct network);
|
|
void (*backward) (struct layer, struct network);
|
|
void (*update) (struct layer, update_args);
|
|
void (*forward_gpu) (struct layer, struct network);
|
|
void (*backward_gpu) (struct layer, struct network);
|
|
void (*update_gpu) (struct layer, update_args);
|
|
int batch_normalize;
|
|
int shortcut;
|
|
int batch;
|
|
int forced;
|
|
int flipped;
|
|
int inputs;
|
|
int outputs;
|
|
int nweights;
|
|
int nbiases;
|
|
int extra;
|
|
int truths;
|
|
int h,w,c;
|
|
int out_h, out_w, out_c;
|
|
int n;
|
|
int max_boxes;
|
|
int groups;
|
|
int size;
|
|
int side;
|
|
int stride;
|
|
int reverse;
|
|
int flatten;
|
|
int spatial;
|
|
int pad;
|
|
int sqrt;
|
|
int flip;
|
|
int index;
|
|
int binary;
|
|
int xnor;
|
|
int steps;
|
|
int hidden;
|
|
int truth;
|
|
float smooth;
|
|
float dot;
|
|
float angle;
|
|
float jitter;
|
|
float saturation;
|
|
float exposure;
|
|
float shift;
|
|
float ratio;
|
|
float learning_rate_scale;
|
|
float clip;
|
|
int softmax;
|
|
int classes;
|
|
int coords;
|
|
int background;
|
|
int rescore;
|
|
int objectness;
|
|
int joint;
|
|
int noadjust;
|
|
int reorg;
|
|
int log;
|
|
int tanh;
|
|
int *mask;
|
|
int total;
|
|
|
|
float alpha;
|
|
float beta;
|
|
float kappa;
|
|
|
|
float coord_scale;
|
|
float object_scale;
|
|
float noobject_scale;
|
|
float mask_scale;
|
|
float class_scale;
|
|
int bias_match;
|
|
int random;
|
|
float ignore_thresh;
|
|
float truth_thresh;
|
|
float thresh;
|
|
float focus;
|
|
int classfix;
|
|
int absolute;
|
|
|
|
int onlyforward;
|
|
int stopbackward;
|
|
int dontload;
|
|
int dontsave;
|
|
int dontloadscales;
|
|
|
|
float temperature;
|
|
float probability;
|
|
float scale;
|
|
|
|
char * cweights;
|
|
int * indexes;
|
|
int * input_layers;
|
|
int * input_sizes;
|
|
int * map;
|
|
float * rand;
|
|
float * cost;
|
|
float * state;
|
|
float * prev_state;
|
|
float * forgot_state;
|
|
float * forgot_delta;
|
|
float * state_delta;
|
|
float * combine_cpu;
|
|
float * combine_delta_cpu;
|
|
|
|
float * concat;
|
|
float * concat_delta;
|
|
|
|
float * binary_weights;
|
|
|
|
float * biases;
|
|
float * bias_updates;
|
|
|
|
float * scales;
|
|
float * scale_updates;
|
|
|
|
float * weights;
|
|
float * weight_updates;
|
|
|
|
float * delta;
|
|
float * output;
|
|
float * loss;
|
|
float * squared;
|
|
float * norms;
|
|
|
|
float * spatial_mean;
|
|
float * mean;
|
|
float * variance;
|
|
|
|
float * mean_delta;
|
|
float * variance_delta;
|
|
|
|
float * rolling_mean;
|
|
float * rolling_variance;
|
|
|
|
float * x;
|
|
float * x_norm;
|
|
|
|
float * m;
|
|
float * v;
|
|
|
|
float * bias_m;
|
|
float * bias_v;
|
|
float * scale_m;
|
|
float * scale_v;
|
|
|
|
|
|
float *z_cpu;
|
|
float *r_cpu;
|
|
float *h_cpu;
|
|
float * prev_state_cpu;
|
|
|
|
float *temp_cpu;
|
|
float *temp2_cpu;
|
|
float *temp3_cpu;
|
|
|
|
float *dh_cpu;
|
|
float *hh_cpu;
|
|
float *prev_cell_cpu;
|
|
float *cell_cpu;
|
|
float *f_cpu;
|
|
float *i_cpu;
|
|
float *g_cpu;
|
|
float *o_cpu;
|
|
float *c_cpu;
|
|
float *dc_cpu;
|
|
|
|
float * binary_input;
|
|
|
|
struct layer *input_layer;
|
|
struct layer *self_layer;
|
|
struct layer *output_layer;
|
|
|
|
struct layer *reset_layer;
|
|
struct layer *update_layer;
|
|
struct layer *state_layer;
|
|
|
|
struct layer *input_gate_layer;
|
|
struct layer *state_gate_layer;
|
|
struct layer *input_save_layer;
|
|
struct layer *state_save_layer;
|
|
struct layer *input_state_layer;
|
|
struct layer *state_state_layer;
|
|
|
|
struct layer *input_z_layer;
|
|
struct layer *state_z_layer;
|
|
|
|
struct layer *input_r_layer;
|
|
struct layer *state_r_layer;
|
|
|
|
struct layer *input_h_layer;
|
|
struct layer *state_h_layer;
|
|
|
|
struct layer *wz;
|
|
struct layer *uz;
|
|
struct layer *wr;
|
|
struct layer *ur;
|
|
struct layer *wh;
|
|
struct layer *uh;
|
|
struct layer *uo;
|
|
struct layer *wo;
|
|
struct layer *uf;
|
|
struct layer *wf;
|
|
struct layer *ui;
|
|
struct layer *wi;
|
|
struct layer *ug;
|
|
struct layer *wg;
|
|
|
|
tree *softmax_tree;
|
|
|
|
size_t workspace_size;
|
|
|
|
#ifdef GPU
|
|
int *indexes_gpu;
|
|
|
|
float *z_gpu;
|
|
float *r_gpu;
|
|
float *h_gpu;
|
|
|
|
float *temp_gpu;
|
|
float *temp2_gpu;
|
|
float *temp3_gpu;
|
|
|
|
float *dh_gpu;
|
|
float *hh_gpu;
|
|
float *prev_cell_gpu;
|
|
float *cell_gpu;
|
|
float *f_gpu;
|
|
float *i_gpu;
|
|
float *g_gpu;
|
|
float *o_gpu;
|
|
float *c_gpu;
|
|
float *dc_gpu;
|
|
|
|
float *m_gpu;
|
|
float *v_gpu;
|
|
float *bias_m_gpu;
|
|
float *scale_m_gpu;
|
|
float *bias_v_gpu;
|
|
float *scale_v_gpu;
|
|
|
|
float * combine_gpu;
|
|
float * combine_delta_gpu;
|
|
|
|
float * prev_state_gpu;
|
|
float * forgot_state_gpu;
|
|
float * forgot_delta_gpu;
|
|
float * state_gpu;
|
|
float * state_delta_gpu;
|
|
float * gate_gpu;
|
|
float * gate_delta_gpu;
|
|
float * save_gpu;
|
|
float * save_delta_gpu;
|
|
float * concat_gpu;
|
|
float * concat_delta_gpu;
|
|
|
|
float * binary_input_gpu;
|
|
float * binary_weights_gpu;
|
|
|
|
float * mean_gpu;
|
|
float * variance_gpu;
|
|
|
|
float * rolling_mean_gpu;
|
|
float * rolling_variance_gpu;
|
|
|
|
float * variance_delta_gpu;
|
|
float * mean_delta_gpu;
|
|
|
|
float * x_gpu;
|
|
float * x_norm_gpu;
|
|
float * weights_gpu;
|
|
float * weight_updates_gpu;
|
|
float * weight_change_gpu;
|
|
|
|
float * biases_gpu;
|
|
float * bias_updates_gpu;
|
|
float * bias_change_gpu;
|
|
|
|
float * scales_gpu;
|
|
float * scale_updates_gpu;
|
|
float * scale_change_gpu;
|
|
|
|
float * output_gpu;
|
|
float * loss_gpu;
|
|
float * delta_gpu;
|
|
float * rand_gpu;
|
|
float * squared_gpu;
|
|
float * norms_gpu;
|
|
#ifdef CUDNN
|
|
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
|
|
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
|
|
cudnnTensorDescriptor_t normTensorDesc;
|
|
cudnnFilterDescriptor_t weightDesc;
|
|
cudnnFilterDescriptor_t dweightDesc;
|
|
cudnnConvolutionDescriptor_t convDesc;
|
|
cudnnConvolutionFwdAlgo_t fw_algo;
|
|
cudnnConvolutionBwdDataAlgo_t bd_algo;
|
|
cudnnConvolutionBwdFilterAlgo_t bf_algo;
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
void free_layer(layer);
|
|
|
|
typedef enum {
|
|
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
|
|
} learning_rate_policy;
|
|
|
|
typedef struct network{
|
|
int n;
|
|
int batch;
|
|
size_t *seen;
|
|
int *t;
|
|
float epoch;
|
|
int subdivisions;
|
|
layer *layers;
|
|
float *output;
|
|
learning_rate_policy policy;
|
|
|
|
float learning_rate;
|
|
float momentum;
|
|
float decay;
|
|
float gamma;
|
|
float scale;
|
|
float power;
|
|
int time_steps;
|
|
int step;
|
|
int max_batches;
|
|
float *scales;
|
|
int *steps;
|
|
int num_steps;
|
|
int burn_in;
|
|
|
|
int adam;
|
|
float B1;
|
|
float B2;
|
|
float eps;
|
|
|
|
int inputs;
|
|
int outputs;
|
|
int truths;
|
|
int notruth;
|
|
int h, w, c;
|
|
int max_crop;
|
|
int min_crop;
|
|
float max_ratio;
|
|
float min_ratio;
|
|
int center;
|
|
float angle;
|
|
float aspect;
|
|
float exposure;
|
|
float saturation;
|
|
float hue;
|
|
int random;
|
|
|
|
int gpu_index;
|
|
tree *hierarchy;
|
|
|
|
float *input;
|
|
float *truth;
|
|
float *delta;
|
|
float *workspace;
|
|
int train;
|
|
int index;
|
|
float *cost;
|
|
float clip;
|
|
|
|
#ifdef GPU
|
|
float *input_gpu;
|
|
float *truth_gpu;
|
|
float *delta_gpu;
|
|
float *output_gpu;
|
|
#endif
|
|
|
|
} network;
|
|
|
|
typedef struct {
|
|
int w;
|
|
int h;
|
|
float scale;
|
|
float rad;
|
|
float dx;
|
|
float dy;
|
|
float aspect;
|
|
} augment_args;
|
|
|
|
typedef struct {
|
|
int w;
|
|
int h;
|
|
int c;
|
|
float *data;
|
|
} image;
|
|
|
|
typedef struct{
|
|
float x, y, w, h;
|
|
} box;
|
|
|
|
typedef struct detection{
|
|
box bbox;
|
|
int classes;
|
|
float *prob;
|
|
float *mask;
|
|
float objectness;
|
|
int sort_class;
|
|
} detection;
|
|
|
|
typedef struct matrix{
|
|
int rows, cols;
|
|
float **vals;
|
|
} matrix;
|
|
|
|
|
|
typedef struct{
|
|
int w, h;
|
|
matrix X;
|
|
matrix y;
|
|
int shallow;
|
|
int *num_boxes;
|
|
box **boxes;
|
|
} data;
|
|
|
|
typedef enum {
|
|
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA
|
|
} data_type;
|
|
|
|
typedef struct load_args{
|
|
int threads;
|
|
char **paths;
|
|
char *path;
|
|
int n;
|
|
int m;
|
|
char **labels;
|
|
int h;
|
|
int w;
|
|
int out_w;
|
|
int out_h;
|
|
int nh;
|
|
int nw;
|
|
int num_boxes;
|
|
int min, max, size;
|
|
int classes;
|
|
int background;
|
|
int scale;
|
|
int center;
|
|
int coords;
|
|
float jitter;
|
|
float angle;
|
|
float aspect;
|
|
float saturation;
|
|
float exposure;
|
|
float hue;
|
|
data *d;
|
|
image *im;
|
|
image *resized;
|
|
data_type type;
|
|
tree *hierarchy;
|
|
} load_args;
|
|
|
|
typedef struct{
|
|
int id;
|
|
float x,y,w,h;
|
|
float left, right, top, bottom;
|
|
} box_label;
|
|
|
|
|
|
network *load_network(char *cfg, char *weights, int clear);
|
|
load_args get_base_args(network *net);
|
|
|
|
void free_data(data d);
|
|
|
|
typedef struct node{
|
|
void *val;
|
|
struct node *next;
|
|
struct node *prev;
|
|
} node;
|
|
|
|
typedef struct list{
|
|
int size;
|
|
node *front;
|
|
node *back;
|
|
} list;
|
|
|
|
pthread_t load_data(load_args args);
|
|
list *read_data_cfg(char *filename);
|
|
list *read_cfg(char *filename);
|
|
unsigned char *read_file(char *filename);
|
|
data resize_data(data orig, int w, int h);
|
|
data *tile_data(data orig, int divs, int size);
|
|
data select_data(data *orig, int *inds);
|
|
|
|
void forward_network(network *net);
|
|
void backward_network(network *net);
|
|
void update_network(network *net);
|
|
|
|
|
|
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
|
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
|
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
|
void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
|
void fill_cpu(int N, float ALPHA, float * X, int INCX);
|
|
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
|
void softmax(float *input, int n, float temp, int stride, float *output);
|
|
|
|
int best_3d_shift_r(image a, image b, int min, int max);
|
|
#ifdef GPU
|
|
void axpy_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
|
void fill_gpu(int N, float ALPHA, float * X, int INCX);
|
|
void scal_gpu(int N, float ALPHA, float * X, int INCX);
|
|
void copy_gpu(int N, float * X, int INCX, float * Y, int INCY);
|
|
|
|
void cuda_set_device(int n);
|
|
void cuda_free(float *x_gpu);
|
|
float *cuda_make_array(float *x, size_t n);
|
|
void cuda_pull_array(float *x_gpu, float *x, size_t n);
|
|
float cuda_mag_array(float *x_gpu, size_t n);
|
|
void cuda_push_array(float *x_gpu, float *x, size_t n);
|
|
|
|
void forward_network_gpu(network *net);
|
|
void backward_network_gpu(network *net);
|
|
void update_network_gpu(network *net);
|
|
|
|
float train_networks(network **nets, int n, data d, int interval);
|
|
void sync_nets(network **nets, int n, int interval);
|
|
void harmless_update_network_gpu(network *net);
|
|
#endif
|
|
image get_label(image **characters, char *string, int size);
|
|
void draw_label(image a, int r, int c, image label, const float *rgb);
|
|
void save_image_png(image im, const char *name);
|
|
void get_next_batch(data d, int n, int offset, float *X, float *y);
|
|
void grayscale_image_3c(image im);
|
|
void normalize_image(image p);
|
|
void matrix_to_csv(matrix m);
|
|
float train_network_sgd(network *net, data d, int n);
|
|
void rgbgr_image(image im);
|
|
data copy_data(data d);
|
|
data concat_data(data d1, data d2);
|
|
data load_cifar10_data(char *filename);
|
|
float matrix_topk_accuracy(matrix truth, matrix guess, int k);
|
|
void matrix_add_matrix(matrix from, matrix to);
|
|
void scale_matrix(matrix m, float scale);
|
|
matrix csv_to_matrix(char *filename);
|
|
float *network_accuracies(network *net, data d, int n);
|
|
float train_network_datum(network *net);
|
|
image make_random_image(int w, int h, int c);
|
|
|
|
void denormalize_connected_layer(layer l);
|
|
void denormalize_convolutional_layer(layer l);
|
|
void statistics_connected_layer(layer l);
|
|
void rescale_weights(layer l, float scale, float trans);
|
|
void rgbgr_weights(layer l);
|
|
image *get_weights(layer l);
|
|
|
|
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, int avg, float hier_thresh, int w, int h, int fps, int fullscreen);
|
|
void get_detection_detections(layer l, int w, int h, float thresh, detection *dets);
|
|
|
|
char *option_find_str(list *l, char *key, char *def);
|
|
int option_find_int(list *l, char *key, int def);
|
|
|
|
network *parse_network_cfg(char *filename);
|
|
void save_weights(network *net, char *filename);
|
|
void load_weights(network *net, char *filename);
|
|
void save_weights_upto(network *net, char *filename, int cutoff);
|
|
void load_weights_upto(network *net, char *filename, int start, int cutoff);
|
|
|
|
void zero_objectness(layer l);
|
|
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets);
|
|
void free_network(network *net);
|
|
void set_batch_network(network *net, int b);
|
|
void set_temp_network(network *net, float t);
|
|
image load_image(char *filename, int w, int h, int c);
|
|
image load_image_color(char *filename, int w, int h);
|
|
image make_image(int w, int h, int c);
|
|
image resize_image(image im, int w, int h);
|
|
void censor_image(image im, int dx, int dy, int w, int h);
|
|
image letterbox_image(image im, int w, int h);
|
|
image crop_image(image im, int dx, int dy, int w, int h);
|
|
image center_crop_image(image im, int w, int h);
|
|
image resize_min(image im, int min);
|
|
image resize_max(image im, int max);
|
|
image threshold_image(image im, float thresh);
|
|
image mask_to_rgb(image mask);
|
|
int resize_network(network *net, int w, int h);
|
|
void free_matrix(matrix m);
|
|
void test_resize(char *filename);
|
|
void save_image(image p, const char *name);
|
|
void show_image(image p, const char *name);
|
|
image copy_image(image p);
|
|
void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b);
|
|
float get_current_rate(network *net);
|
|
void composite_3d(char *f1, char *f2, char *out, int delta);
|
|
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h);
|
|
size_t get_current_batch(network *net);
|
|
void constrain_image(image im);
|
|
image get_network_image_layer(network *net, int i);
|
|
layer get_network_output_layer(network *net);
|
|
void top_predictions(network *net, int n, int *index);
|
|
void flip_image(image a);
|
|
image float_to_image(int w, int h, int c, float *data);
|
|
void ghost_image(image source, image dest, int dx, int dy);
|
|
float network_accuracy(network *net, data d);
|
|
void random_distort_image(image im, float hue, float saturation, float exposure);
|
|
void fill_image(image m, float s);
|
|
image grayscale_image(image im);
|
|
void rotate_image_cw(image im, int times);
|
|
double what_time_is_it_now();
|
|
image rotate_image(image m, float rad);
|
|
void visualize_network(network *net);
|
|
float box_iou(box a, box b);
|
|
data load_all_cifar10();
|
|
box_label *read_boxes(char *filename, int *n);
|
|
box float_to_box(float *f, int stride);
|
|
void draw_detections(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes);
|
|
|
|
matrix network_predict_data(network *net, data test);
|
|
image **load_alphabet();
|
|
image get_network_image(network *net);
|
|
float *network_predict(network *net, float *input);
|
|
|
|
int network_width(network *net);
|
|
int network_height(network *net);
|
|
float *network_predict_image(network *net, image im);
|
|
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets);
|
|
int num_boxes(network *net);
|
|
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative);
|
|
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets);
|
|
detection *make_network_boxes(network *net);
|
|
void free_detections(detection *dets, int n);
|
|
|
|
void reset_network_state(network *net, int b);
|
|
|
|
char **get_labels(char *filename);
|
|
void do_nms_obj(detection *dets, int total, int classes, float thresh);
|
|
void do_nms_sort(detection *dets, int total, int classes, float thresh);
|
|
|
|
matrix make_matrix(int rows, int cols);
|
|
|
|
#ifndef __cplusplus
|
|
#ifdef OPENCV
|
|
image get_image_from_stream(CvCapture *cap);
|
|
#endif
|
|
#endif
|
|
void free_image(image m);
|
|
float train_network(network *net, data d);
|
|
pthread_t load_data_in_thread(load_args args);
|
|
void load_data_blocking(load_args args);
|
|
list *get_paths(char *filename);
|
|
void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves, int stride);
|
|
void change_leaves(tree *t, char *leaf_list);
|
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def);
|
|
float find_float_arg(int argc, char **argv, char *arg, float def);
|
|
int find_arg(int argc, char* argv[], char *arg);
|
|
char *find_char_arg(int argc, char **argv, char *arg, char *def);
|
|
char *basecfg(char *cfgfile);
|
|
void find_replace(char *str, char *orig, char *rep, char *output);
|
|
void free_ptrs(void **ptrs, int n);
|
|
char *fgetl(FILE *fp);
|
|
void strip(char *s);
|
|
float sec(clock_t clocks);
|
|
void **list_to_array(list *l);
|
|
void top_k(float *a, int n, int k, int *index);
|
|
int *read_map(char *filename);
|
|
void error(const char *s);
|
|
int max_index(float *a, int n);
|
|
int max_int_index(int *a, int n);
|
|
int sample_array(float *a, int n);
|
|
int *random_index_order(int min, int max);
|
|
void free_list(list *l);
|
|
float mse_array(float *a, int n);
|
|
float variance_array(float *a, int n);
|
|
float mag_array(float *a, int n);
|
|
void scale_array(float *a, int n, float s);
|
|
float mean_array(float *a, int n);
|
|
float sum_array(float *a, int n);
|
|
void normalize_array(float *a, int n);
|
|
int *read_intlist(char *s, int *n, int d);
|
|
size_t rand_size_t();
|
|
float rand_normal();
|
|
float rand_uniform(float min, float max);
|
|
|
|
#endif
|