ede/evoke/Logout.cpp

471 lines
13 KiB
C++
Raw Normal View History

/*
* $Id$
*
* Evoke, head honcho of everything
* Part of Equinox Desktop Environment (EDE).
* Copyright (c) 2000-2007 EDE Authors.
*
* This program is licensed under terms of the
* GNU General Public License version 2 or newer.
* See COPYING for details.
*/
#include "Logout.h"
#include <edelib/Nls.h>
#include <FL/Fl_Double_Window.h>
#include <FL/Fl_Box.h>
#include <FL/Fl_Button.h>
#include <FL/Fl_Round_Button.h>
#include <FL/Fl_RGB_Image.h>
#include <FL/Fl.h>
#include <FL/x.h>
#include <string.h> // memset
static int logout_ret;
static Fl_Double_Window* win;
static Fl_Round_Button* rb1;
static Fl_Round_Button* rb2;
static Fl_Round_Button* rb3;
unsigned char* take_x11_screenshot(unsigned char *p, int X, int Y, int w, int h, int alpha);
unsigned char* make_darker(unsigned char *p, int X, int Y, int w, int h);
void rb_cb(Fl_Widget*, void* r) {
Fl_Round_Button* rb = (Fl_Round_Button*)r;
if(rb == rb2) {
rb1->value(0);
rb3->value(0);
} else if(rb == rb3) {
rb1->value(0);
rb2->value(0);
} else {
rb2->value(0);
rb3->value(0);
}
rb->value(1);
}
void ok_cb(Fl_Widget*, void*) {
if(rb1->value())
logout_ret = LOGOUT_LOGOUT;
else if(rb2->value())
logout_ret = LOGOUT_RESTART;
else
logout_ret = LOGOUT_SHUTDOWN;
win->hide();
}
void cancel_cb(Fl_Widget*, void*) {
logout_ret = LOGOUT_CANCEL;
win->hide();
}
int logout_dialog(int screen_w, int screen_h, bool disable_restart, bool disable_shutdown) {
logout_ret = 0;
unsigned char* imgdata = NULL;
imgdata = take_x11_screenshot(imgdata, 0, 0, screen_w, screen_h, 0);
if(imgdata)
imgdata = make_darker(imgdata, 0, 0, screen_w, screen_h);
//win = new Fl_Double_Window(365, 265, 325, 185, _("Logout, restart or shutdown"));
win = new Fl_Double_Window(0, 0, screen_w, screen_h, _("Logout, restart or shutdown"));
win->begin();
Fl_Box* bb = new Fl_Box(0, 0, win->w(), win->h());
Fl_RGB_Image* img = new Fl_RGB_Image(imgdata, 1024, 768);
img->alloc_array = 1;
bb->image(img);
//Fl_Group* g = new Fl_Group(365, 265, 325, 185);
Fl_Group* g = new Fl_Group(0, 0, 325, 185);
g->box(FL_THIN_UP_BOX);
g->begin();
Fl_Box* b = new Fl_Box(10, 9, 305, 39, _("Logout, restart or shut down the computer ?"));
b->align(FL_ALIGN_LEFT | FL_ALIGN_INSIDE | FL_ALIGN_WRAP);
b->labelfont(FL_HELVETICA_BOLD);
rb1 = new Fl_Round_Button(25, 60, 275, 20, _("Logout from the current session"));
rb1->down_box(FL_ROUND_DOWN_BOX);
rb1->value(1);
rb1->callback(rb_cb, rb1);
rb2 = new Fl_Round_Button(25, 85, 275, 20, _("Restart the computer"));
rb2->down_box(FL_ROUND_DOWN_BOX);
rb2->value(0);
rb2->callback(rb_cb, rb2);
if(disable_restart)
rb2->deactivate();
rb3 = new Fl_Round_Button(25, 110, 275, 20, _("Shut down the computer"));
rb3->down_box(FL_ROUND_DOWN_BOX);
rb3->value(0);
rb3->callback(rb_cb, rb3);
if(disable_shutdown)
rb3->deactivate();
Fl_Button* ok = new Fl_Button(130, 150, 90, 25, _("&OK"));
ok->callback(ok_cb);
Fl_Button* cancel = new Fl_Button(225, 150, 90, 25, _("&Cancel"));
cancel->callback(cancel_cb);
g->end();
g->position(screen_w/2 - g->w()/2, screen_h/2 - g->h()/2);
win->end();
win->clear_border();
win->set_override();
win->show();
while(win->shown())
Fl::wait();
return logout_ret;
}
unsigned char* make_darker(unsigned char *p, int X, int Y, int w, int h) {
if(!p)
return 0;
unsigned char* pdata = p;
int step = 100;
for(int j = 0; j < h; j++) {
for(int i = 0; i < w; i++) {
// red
if(*pdata > step) *pdata -= step; pdata++;
// green
if(*pdata > step) *pdata -= step; pdata++;
// blue
if(*pdata > step) *pdata -= step; pdata++;
}
}
return p;
}
// stolen from fl_read_image.cxx
unsigned char* take_x11_screenshot(unsigned char *p, int X, int Y, int w, int h, int alpha) {
XImage *image;
int i, maxindex;
int x, y; // Current X & Y in image
int d; // Depth of image
unsigned char *line, // Array to hold image row
*line_ptr; // Pointer to current line image
unsigned char *pixel; // Current color value
XColor colors[4096]; // Colors from the colormap...
unsigned char cvals[4096][3]; // Color values from the colormap...
unsigned index_mask,
index_shift,
red_mask,
red_shift,
green_mask,
green_shift,
blue_mask,
blue_shift;
//
// Under X11 we have the option of the XGetImage() interface or SGI's
// ReadDisplay extension which does all of the really hard work for
// us...
//
image = 0;
if (!image) {
image = XGetImage(fl_display, RootWindow(fl_display, fl_screen), X, Y, w, h, AllPlanes, ZPixmap);
}
if (!image) return 0;
d = alpha ? 4 : 3;
// Allocate the image data array as needed...
if (!p) p = new unsigned char[w * h * d];
// Initialize the default colors/alpha in the whole image...
memset(p, alpha, w * h * d);
// Check that we have valid mask/shift values...
if (!image->red_mask && image->bits_per_pixel > 12) {
// Greater than 12 bits must be TrueColor...
image->red_mask = fl_visual->visual->red_mask;
image->green_mask = fl_visual->visual->green_mask;
image->blue_mask = fl_visual->visual->blue_mask;
}
// Check if we have colormap image...
if (!image->red_mask) {
// Get the colormap entries for this window...
maxindex = fl_visual->visual->map_entries;
for (i = 0; i < maxindex; i ++) colors[i].pixel = i;
XQueryColors(fl_display, fl_colormap, colors, maxindex);
for (i = 0; i < maxindex; i ++) {
cvals[i][0] = colors[i].red >> 8;
cvals[i][1] = colors[i].green >> 8;
cvals[i][2] = colors[i].blue >> 8;
}
// Read the pixels and output an RGB image...
for (y = 0; y < image->height; y ++) {
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
line = p + y * w * d;
switch (image->bits_per_pixel) {
case 1 :
for (x = image->width, line_ptr = line, index_mask = 128;
x > 0;
x --, line_ptr += d) {
if (*pixel & index_mask) {
line_ptr[0] = cvals[1][0];
line_ptr[1] = cvals[1][1];
line_ptr[2] = cvals[1][2];
} else {
line_ptr[0] = cvals[0][0];
line_ptr[1] = cvals[0][1];
line_ptr[2] = cvals[0][2];
}
if (index_mask > 1) {
index_mask >>= 1;
} else {
index_mask = 128;
pixel ++;
}
}
break;
case 2 :
for (x = image->width, line_ptr = line, index_shift = 6;
x > 0;
x --, line_ptr += d) {
i = (*pixel >> index_shift) & 3;
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift > 0) {
index_mask >>= 2;
index_shift -= 2;
} else {
index_mask = 192;
index_shift = 6;
pixel ++;
}
}
break;
case 4 :
for (x = image->width, line_ptr = line, index_shift = 4;
x > 0;
x --, line_ptr += d) {
if (index_shift == 4) i = (*pixel >> 4) & 15;
else i = *pixel & 15;
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift > 0) {
index_shift = 0;
} else {
index_shift = 4;
pixel ++;
}
}
break;
case 8 :
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel ++) {
line_ptr[0] = cvals[*pixel][0];
line_ptr[1] = cvals[*pixel][1];
line_ptr[2] = cvals[*pixel][2];
}
break;
case 12 :
for (x = image->width, line_ptr = line, index_shift = 0;
x > 0;
x --, line_ptr += d) {
if (index_shift == 0) {
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
} else {
i = ((pixel[1] << 8) | pixel[2]) & 4095;
}
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift == 0) {
index_shift = 4;
} else {
index_shift = 0;
pixel += 3;
}
}
break;
}
}
} else {
// RGB(A) image, so figure out the shifts & masks...
red_mask = image->red_mask;
red_shift = 0;
while ((red_mask & 1) == 0) {
red_mask >>= 1;
red_shift ++;
}
green_mask = image->green_mask;
green_shift = 0;
while ((green_mask & 1) == 0) {
green_mask >>= 1;
green_shift ++;
}
blue_mask = image->blue_mask;
blue_shift = 0;
while ((blue_mask & 1) == 0) {
blue_mask >>= 1;
blue_shift ++;
}
// Read the pixels and output an RGB image...
for (y = 0; y < image->height; y ++) {
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
line = p + y * w * d;
switch (image->bits_per_pixel) {
case 8 :
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel ++) {
i = *pixel;
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
break;
case 12 :
for (x = image->width, line_ptr = line, index_shift = 0;
x > 0;
x --, line_ptr += d) {
if (index_shift == 0) {
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
} else {
i = ((pixel[1] << 8) | pixel[2]) & 4095;
}
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
if (index_shift == 0) {
index_shift = 4;
} else {
index_shift = 0;
pixel += 3;
}
}
break;
case 16 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 2) {
i = (pixel[1] << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 2) {
i = (pixel[0] << 8) | pixel[1];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
case 24 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 3) {
i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 3) {
i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
case 32 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 4) {
i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 4) {
i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
}
}
}
// Destroy the X image we've read and return the RGB(A) image...
XDestroyImage(image);
return p;
}