/* * This file is part of the libserialport project. * * Copyright (C) 2010-2012 Bert Vermeulen * Copyright (C) 2010-2012 Uwe Hermann * Copyright (C) 2013 Martin Ling * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #ifdef _WIN32 #include #include #include #else #include #include #endif #ifdef __APPLE__ #include #include #include #endif #ifdef __linux__ #include "libudev.h" #include "linux/serial.h" #endif #include "libserialport.h" struct sp_port_data { #ifdef _WIN32 DCB dcb; #else struct termios term; int controlbits; #endif }; /* Standard baud rates. */ #ifdef _WIN32 #define BAUD_TYPE DWORD #define BAUD(n) {CBR_##n, n} #else #define BAUD_TYPE speed_t #define BAUD(n) {B##n, n} #endif struct std_baudrate { BAUD_TYPE index; int value; }; const struct std_baudrate std_baudrates[] = { #ifdef _WIN32 /* * The baudrates 50/75/134/150/200/1800/230400/460800 do not seem to * have documented CBR_* macros. */ BAUD(110), BAUD(300), BAUD(600), BAUD(1200), BAUD(2400), BAUD(4800), BAUD(9600), BAUD(14400), BAUD(19200), BAUD(38400), BAUD(57600), BAUD(115200), BAUD(128000), BAUD(256000) #else BAUD(50), BAUD(75), BAUD(110), BAUD(134), BAUD(150), BAUD(200), BAUD(300), BAUD(600), BAUD(1200), BAUD(1800), BAUD(2400), BAUD(4800), BAUD(9600), BAUD(19200), BAUD(38400), BAUD(57600), BAUD(115200), BAUD(230400), #if !defined(__APPLE__) && !defined(__OpenBSD__) BAUD(460800) #endif #endif }; #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #define NUM_STD_BAUDRATES ARRAY_SIZE(std_baudrates) /* Helper functions. */ static int validate_port(struct sp_port *port); static struct sp_port **list_append(struct sp_port **list, const char *portname); static int get_config(struct sp_port *port, struct sp_port_data *data, struct sp_port_config *config); static int set_config(struct sp_port *port, struct sp_port_data *data, struct sp_port_config *config); int sp_get_port_by_name(const char *portname, struct sp_port **port_ptr) { struct sp_port *port; int len; if (!port_ptr) return SP_ERR_ARG; *port_ptr = NULL; if (!portname) return SP_ERR_ARG; if (!(port = malloc(sizeof(struct sp_port)))) return SP_ERR_MEM; len = strlen(portname) + 1; if (!(port->name = malloc(len))) { free(port); return SP_ERR_MEM; } memcpy(port->name, portname, len); #ifdef _WIN32 port->hdl = INVALID_HANDLE_VALUE; #else port->fd = -1; #endif *port_ptr = port; return SP_OK; } int sp_copy_port(const struct sp_port *port, struct sp_port **copy_ptr) { if (!copy_ptr) return SP_ERR_ARG; *copy_ptr = NULL; if (!port || !port->name) return SP_ERR_ARG; return sp_get_port_by_name(port->name, copy_ptr); } void sp_free_port(struct sp_port *port) { if (!port) return; if (port->name) free(port->name); free(port); } static struct sp_port **list_append(struct sp_port **list, const char *portname) { void *tmp; unsigned int count; for (count = 0; list[count]; count++); if (!(tmp = realloc(list, sizeof(struct sp_port *) * (count + 2)))) goto fail; list = tmp; if (sp_get_port_by_name(portname, &list[count]) != SP_OK) goto fail; list[count + 1] = NULL; return list; fail: sp_free_port_list(list); return NULL; } int sp_list_ports(struct sp_port ***list_ptr) { struct sp_port **list; int ret = SP_OK; if (!(list = malloc(sizeof(struct sp_port **)))) return SP_ERR_MEM; list[0] = NULL; #ifdef _WIN32 HKEY key; TCHAR *value, *data; DWORD max_value_len, max_data_size, max_data_len; DWORD value_len, data_size, data_len; DWORD type, index = 0; char *name; int name_len; if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, _T("HARDWARE\\DEVICEMAP\\SERIALCOMM"), 0, KEY_QUERY_VALUE, &key) != ERROR_SUCCESS) { ret = SP_ERR_FAIL; goto out_done; } if (RegQueryInfoKey(key, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &max_value_len, &max_data_size, NULL, NULL) != ERROR_SUCCESS) { ret = SP_ERR_FAIL; goto out_close; } max_data_len = max_data_size / sizeof(TCHAR); if (!(value = malloc((max_value_len + 1) * sizeof(TCHAR)))) { ret = SP_ERR_MEM; goto out_close; } if (!(data = malloc((max_data_len + 1) * sizeof(TCHAR)))) { ret = SP_ERR_MEM; goto out_free_value; } while ( value_len = max_value_len + 1, data_size = max_data_size, RegEnumValue(key, index, value, &value_len, NULL, &type, (LPBYTE)data, &data_size) == ERROR_SUCCESS) { data_len = data_size / sizeof(TCHAR); data[data_len] = '\0'; #ifdef UNICODE name_len = WideCharToMultiByte(CP_ACP, 0, data, -1, NULL, 0, NULL, NULL) #else name_len = data_len + 1; #endif if (!(name = malloc(name_len))) { ret = SP_ERR_MEM; goto out; } #ifdef UNICODE WideCharToMultiByte(CP_ACP, 0, data, -1, name, name_len, NULL, NULL); #else strcpy(name, data); #endif if (type == REG_SZ && !(list = list_append(list, name))) { ret = SP_ERR_MEM; goto out; } index++; } out: free(data); out_free_value: free(value); out_close: RegCloseKey(key); out_done: #endif #ifdef __APPLE__ mach_port_t master; CFMutableDictionaryRef classes; io_iterator_t iter; char *path; io_object_t port; CFTypeRef cf_path; Boolean result; if (IOMasterPort(MACH_PORT_NULL, &master) != KERN_SUCCESS) { ret = SP_ERR_FAIL; goto out_done; } if (!(classes = IOServiceMatching(kIOSerialBSDServiceValue))) { ret = SP_ERR_FAIL; goto out_done; } CFDictionarySetValue(classes, CFSTR(kIOSerialBSDTypeKey), CFSTR(kIOSerialBSDAllTypes)); if (IOServiceGetMatchingServices(master, classes, &iter) != KERN_SUCCESS) { ret = SP_ERR_FAIL; goto out_done; } if (!(path = malloc(PATH_MAX))) { ret = SP_ERR_MEM; goto out_release; } while ((port = IOIteratorNext(iter))) { cf_path = IORegistryEntryCreateCFProperty(port, CFSTR(kIOCalloutDeviceKey), kCFAllocatorDefault, 0); if (cf_path) { result = CFStringGetCString(cf_path, path, PATH_MAX, kCFStringEncodingASCII); CFRelease(cf_path); if (result && !(list = list_append(list, path))) { ret = SP_ERR_MEM; IOObjectRelease(port); goto out; } } IOObjectRelease(port); } out: free(path); out_release: IOObjectRelease(iter); out_done: #endif #ifdef __linux__ struct udev *ud; struct udev_enumerate *ud_enumerate; struct udev_list_entry *ud_list; struct udev_list_entry *ud_entry; const char *path; struct udev_device *ud_dev, *ud_parent; const char *name; const char *driver; int fd, ioctl_result; struct serial_struct serial_info; ud = udev_new(); ud_enumerate = udev_enumerate_new(ud); udev_enumerate_add_match_subsystem(ud_enumerate, "tty"); udev_enumerate_scan_devices(ud_enumerate); ud_list = udev_enumerate_get_list_entry(ud_enumerate); udev_list_entry_foreach(ud_entry, ud_list) { path = udev_list_entry_get_name(ud_entry); ud_dev = udev_device_new_from_syspath(ud, path); /* If there is no parent device, this is a virtual tty. */ ud_parent = udev_device_get_parent(ud_dev); if (ud_parent == NULL) { udev_device_unref(ud_dev); continue; } name = udev_device_get_devnode(ud_dev); /* The serial8250 driver has a hardcoded number of ports. * The only way to tell which actually exist on a given system * is to try to open them and make an ioctl call. */ driver = udev_device_get_driver(ud_parent); if (driver && !strcmp(driver, "serial8250")) { if ((fd = open(name, O_RDWR | O_NONBLOCK | O_NOCTTY)) < 0) goto skip; ioctl_result = ioctl(fd, TIOCGSERIAL, &serial_info); close(fd); if (ioctl_result != 0) goto skip; if (serial_info.type == PORT_UNKNOWN) goto skip; } list = list_append(list, name); skip: udev_device_unref(ud_dev); if (!list) { ret = SP_ERR_MEM; goto out; } } out: udev_enumerate_unref(ud_enumerate); udev_unref(ud); #endif if (ret == SP_OK) { *list_ptr = list; } else { if (list) sp_free_port_list(list); *list_ptr = NULL; } return ret; } void sp_free_port_list(struct sp_port **list) { unsigned int i; for (i = 0; list[i]; i++) sp_free_port(list[i]); free(list); } static int validate_port(struct sp_port *port) { if (port == NULL) return 0; #ifdef _WIN32 if (port->hdl == INVALID_HANDLE_VALUE) return 0; #else if (port->fd < 0) return 0; #endif return 1; } #define CHECK_PORT() do { if (!validate_port(port)) return SP_ERR_ARG; } while (0) int sp_open(struct sp_port *port, int flags) { if (!port) return SP_ERR_ARG; #ifdef _WIN32 DWORD desired_access = 0, flags_and_attributes = 0; char *escaped_port_name; /* Prefix port name with '\\.\' to work with ports above COM9. */ if (!(escaped_port_name = malloc(strlen(port->name + 5)))) return SP_ERR_MEM; sprintf(escaped_port_name, "\\\\.\\%s", port->name); /* Map 'flags' to the OS-specific settings. */ desired_access |= GENERIC_READ; flags_and_attributes = FILE_ATTRIBUTE_NORMAL; if (flags & SP_MODE_RDWR) desired_access |= GENERIC_WRITE; if (flags & SP_MODE_NONBLOCK) flags_and_attributes |= FILE_FLAG_OVERLAPPED; port->hdl = CreateFile(escaped_port_name, desired_access, 0, 0, OPEN_EXISTING, flags_and_attributes, 0); free(escaped_port_name); if (port->hdl == INVALID_HANDLE_VALUE) return SP_ERR_FAIL; #else int flags_local = 0; struct sp_port_data data; struct sp_port_config config; int ret; /* Map 'flags' to the OS-specific settings. */ if (flags & SP_MODE_RDWR) flags_local |= O_RDWR; if (flags & SP_MODE_RDONLY) flags_local |= O_RDONLY; if (flags & SP_MODE_NONBLOCK) flags_local |= O_NONBLOCK; if ((port->fd = open(port->name, flags_local)) < 0) return SP_ERR_FAIL; ret = get_config(port, &data, &config); if (ret < 0) { sp_close(port); return ret; } /* Turn off all serial port cooking. */ data.term.c_iflag &= ~(ISTRIP | INLCR | ICRNL); data.term.c_oflag &= ~(ONLCR | OCRNL | ONOCR); #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) data.term.c_oflag &= ~OFILL; #endif /* Disable canonical mode, and don't echo input characters. */ data.term.c_lflag &= ~(ICANON | ECHO); /* Ignore modem status lines; enable receiver */ data.term.c_cflag |= (CLOCAL | CREAD); ret = set_config(port, &data, &config); if (ret < 0) { sp_close(port); return ret; } #endif return SP_OK; } int sp_close(struct sp_port *port) { CHECK_PORT(); #ifdef _WIN32 /* Returns non-zero upon success, 0 upon failure. */ if (CloseHandle(port->hdl) == 0) return SP_ERR_FAIL; port->hdl = INVALID_HANDLE_VALUE; #else /* Returns 0 upon success, -1 upon failure. */ if (close(port->fd) == -1) return SP_ERR_FAIL; port->fd = -1; #endif return SP_OK; } int sp_flush(struct sp_port *port) { CHECK_PORT(); #ifdef _WIN32 /* Returns non-zero upon success, 0 upon failure. */ if (PurgeComm(port->hdl, PURGE_RXCLEAR | PURGE_TXCLEAR) == 0) return SP_ERR_FAIL; #else /* Returns 0 upon success, -1 upon failure. */ if (tcflush(port->fd, TCIOFLUSH) < 0) return SP_ERR_FAIL; #endif return SP_OK; } int sp_write(struct sp_port *port, const void *buf, size_t count) { CHECK_PORT(); if (!buf) return SP_ERR_ARG; #ifdef _WIN32 DWORD written = 0; /* Returns non-zero upon success, 0 upon failure. */ if (WriteFile(port->hdl, buf, count, &written, NULL) == 0) return SP_ERR_FAIL; return written; #else /* Returns the number of bytes written, or -1 upon failure. */ ssize_t written = write(port->fd, buf, count); if (written < 0) return SP_ERR_FAIL; else return written; #endif } int sp_read(struct sp_port *port, void *buf, size_t count) { CHECK_PORT(); if (!buf) return SP_ERR_ARG; #ifdef _WIN32 DWORD bytes_read = 0; /* Returns non-zero upon success, 0 upon failure. */ if (ReadFile(port->hdl, buf, count, &bytes_read, NULL) == 0) return SP_ERR_FAIL; return bytes_read; #else ssize_t bytes_read; /* Returns the number of bytes read, or -1 upon failure. */ if ((bytes_read = read(port->fd, buf, count)) < 0) return SP_ERR_FAIL; return bytes_read; #endif } static int get_config(struct sp_port *port, struct sp_port_data *data, struct sp_port_config *config) { unsigned int i; #ifdef _WIN32 if (!GetCommState(port->hdl, &data->dcb)) return SP_ERR_FAIL; for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (data->dcb.BaudRate == std_baudrates[i].index) { config->baudrate = std_baudrates[i].value; break; } } if (i == NUM_STD_BAUDRATES) /* BaudRate field can be either an index or a custom baud rate. */ config->baudrate = data->dcb.BaudRate; config->bits = data->dcb.ByteSize; if (data->dcb.fParity) switch (data->dcb.Parity) { case NOPARITY: config->parity = SP_PARITY_NONE; break; case EVENPARITY: config->parity = SP_PARITY_EVEN; break; case ODDPARITY: config->parity = SP_PARITY_ODD; break; default: config->parity = -1; } else config->parity = SP_PARITY_NONE; switch (data->dcb.StopBits) { case ONESTOPBIT: config->stopbits = 1; break; case TWOSTOPBITS: config->stopbits = 2; break; default: config->stopbits = -1; } switch (data->dcb.fRtsControl) { case RTS_CONTROL_DISABLE: config->rts = SP_RTS_OFF; break; case RTS_CONTROL_ENABLE: config->rts = SP_RTS_ON; break; case RTS_CONTROL_HANDSHAKE: config->rts = SP_RTS_FLOW_CONTROL; break; default: config->rts = -1; } config->cts = data->dcb.fOutxCtsFlow ? SP_CTS_FLOW_CONTROL : SP_CTS_IGNORE; switch (data->dcb.fDtrControl) { case DTR_CONTROL_DISABLE: config->dtr = SP_DTR_OFF; break; case DTR_CONTROL_ENABLE: config->dtr = SP_DTR_ON; break; case DTR_CONTROL_HANDSHAKE: config->dtr = SP_DTR_FLOW_CONTROL; break; default: config->dtr = -1; } config->dsr = data->dcb.fOutxDsrFlow ? SP_DSR_FLOW_CONTROL : SP_DSR_IGNORE; if (data->dcb.fInX) { if (data->dcb.fOutX) config->xon_xoff = SP_XONXOFF_INOUT; else config->xon_xoff = SP_XONXOFF_IN; } else { if (data->dcb.fOutX) config->xon_xoff = SP_XONXOFF_OUT; else config->xon_xoff = SP_XONXOFF_DISABLED; } #else // !_WIN32 if (tcgetattr(port->fd, &data->term) < 0) return SP_ERR_FAIL; if (ioctl(port->fd, TIOCMGET, &data->controlbits) < 0) return SP_ERR_FAIL; for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (cfgetispeed(&data->term) == std_baudrates[i].index) { config->baudrate = std_baudrates[i].value; break; } } if (i == NUM_STD_BAUDRATES) config->baudrate = -1; switch (data->term.c_cflag & CSIZE) { case CS8: config->bits = 8; break; case CS7: config->bits = 7; break; case CS6: config->bits = 6; break; case CS5: config->bits = 5; break; default: config->bits = -1; } if (!(data->term.c_cflag & PARENB) && (data->term.c_iflag & IGNPAR)) config->parity = SP_PARITY_NONE; else if (!(data->term.c_cflag & PARENB) || (data->term.c_iflag & IGNPAR)) config->parity = -1; else config->parity = (data->term.c_cflag & PARODD) ? SP_PARITY_ODD : SP_PARITY_EVEN; config->stopbits = (data->term.c_cflag & CSTOPB) ? 2 : 1; if (data->term.c_cflag & CRTSCTS) { config->rts = SP_RTS_FLOW_CONTROL; config->cts = SP_CTS_FLOW_CONTROL; } else { config->rts = (data->controlbits & TIOCM_RTS) ? SP_RTS_ON : SP_RTS_OFF; config->cts = SP_CTS_IGNORE; } config->dtr = (data->controlbits & TIOCM_DTR) ? SP_DTR_ON : SP_DTR_OFF; config->dsr = SP_DSR_IGNORE; #endif return SP_OK; } static int set_config(struct sp_port *port, struct sp_port_data *data, struct sp_port_config *config) { unsigned int i; #ifdef _WIN32 if (config->baudrate >= 0) { for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (config->baudrate == std_baudrates[i].value) { data->dcb.BaudRate = std_baudrates[i].index; break; } } if (i == NUM_STD_BAUDRATES) data->dcb.BaudRate = config->baudrate; } if (config->bits >= 0) data->dcb.ByteSize = config->bits; if (config->parity >= 0) { switch (config->parity) { /* Note: There's also SPACEPARITY, MARKPARITY (unneeded so far). */ case SP_PARITY_NONE: data->dcb.Parity = NOPARITY; break; case SP_PARITY_EVEN: data->dcb.Parity = EVENPARITY; break; case SP_PARITY_ODD: data->dcb.Parity = ODDPARITY; break; default: return SP_ERR_ARG; } } if (config->stopbits >= 0) { switch (config->stopbits) { /* Note: There's also ONE5STOPBITS == 1.5 (unneeded so far). */ case 1: data->dcb.StopBits = ONESTOPBIT; break; case 2: data->dcb.StopBits = TWOSTOPBITS; break; default: return SP_ERR_ARG; } } if (config->rts >= 0) { switch (config->rts) { case SP_RTS_OFF: data->dcb.fRtsControl = RTS_CONTROL_DISABLE; break; case SP_RTS_ON: data->dcb.fRtsControl = RTS_CONTROL_ENABLE; break; case SP_RTS_FLOW_CONTROL: data->dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; break; default: return SP_ERR_ARG; } } if (config->cts >= 0) { switch (config->cts) { case SP_CTS_IGNORE: data->dcb.fOutxCtsFlow = FALSE; break; case SP_CTS_FLOW_CONTROL: data->dcb.fOutxCtsFlow = TRUE; break; default: return SP_ERR_ARG; } } if (config->dtr >= 0) { switch (config->dtr) { case SP_DTR_OFF: data->dcb.fDtrControl = DTR_CONTROL_DISABLE; break; case SP_DTR_ON: data->dcb.fDtrControl = DTR_CONTROL_ENABLE; break; case SP_DTR_FLOW_CONTROL: data->dcb.fDtrControl = DTR_CONTROL_HANDSHAKE; break; default: return SP_ERR_ARG; } } if (config->dsr >= 0) { switch (config->dsr) { case SP_DSR_IGNORE: data->dcb.fOutxDsrFlow = FALSE; break; case SP_DSR_FLOW_CONTROL: data->dcb.fOutxDsrFlow = TRUE; break; default: return SP_ERR_ARG; } } if (config->xon_xoff >= 0) { switch (config->xon_xoff) { case SP_XONXOFF_DISABLED: data->dcb.fInX = FALSE; data->dcb.fOutX = FALSE; break; case SP_XONXOFF_IN: data->dcb.fInX = TRUE; data->dcb.fOutX = FALSE; break; case SP_XONXOFF_OUT: data->dcb.fInX = FALSE; data->dcb.fOutX = TRUE; break; case SP_XONXOFF_INOUT: data->dcb.fInX = TRUE; data->dcb.fOutX = TRUE; break; default: return SP_ERR_ARG; } } if (!SetCommState(port->hdl, &data->dcb)) return SP_ERR_FAIL; #else // !_WIN32 if (config->baudrate >= 0) { for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (config->baudrate == std_baudrates[i].value) { if (cfsetospeed(&data->term, std_baudrates[i].index) < 0) return SP_ERR_FAIL; if (cfsetispeed(&data->term, std_baudrates[i].index) < 0) return SP_ERR_FAIL; break; } } if (i == NUM_STD_BAUDRATES) return SP_ERR_ARG; } if (config->bits >= 0) { data->term.c_cflag &= ~CSIZE; switch (config->bits) { case 8: data->term.c_cflag |= CS8; break; case 7: data->term.c_cflag |= CS7; break; case 6: data->term.c_cflag |= CS6; break; default: return SP_ERR_ARG; } } if (config->parity >= 0) { data->term.c_iflag &= ~IGNPAR; data->term.c_cflag &= ~(PARENB | PARODD); switch (config->parity) { case SP_PARITY_NONE: data->term.c_iflag |= IGNPAR; break; case SP_PARITY_EVEN: data->term.c_cflag |= PARENB; break; case SP_PARITY_ODD: data->term.c_cflag |= PARENB | PARODD; break; default: return SP_ERR_ARG; } } if (config->stopbits >= 0) { data->term.c_cflag &= ~CSTOPB; switch (config->stopbits) { case 1: data->term.c_cflag &= ~CSTOPB; break; case 2: data->term.c_cflag |= CSTOPB; break; default: return SP_ERR_ARG; } } if (config->rts >= 0 || config->cts >= 0) { /* Asymmetric use of RTS/CTS not supported yet. */ if (data->term.c_iflag & CRTSCTS) { /* Flow control can only be disabled for both RTS & CTS together. */ if (config->rts >= 0 && config->rts != SP_RTS_FLOW_CONTROL) { if (config->cts != SP_CTS_IGNORE) return SP_ERR_ARG; } if (config->cts >= 0 && config->cts != SP_CTS_FLOW_CONTROL) { if (config->rts <= 0 || config->rts == SP_RTS_FLOW_CONTROL) return SP_ERR_ARG; } } else { /* Flow control can only be enabled for both RTS & CTS together. */ if (((config->rts == SP_RTS_FLOW_CONTROL) && (config->cts != SP_CTS_FLOW_CONTROL)) || ((config->cts == SP_CTS_FLOW_CONTROL) && (config->rts != SP_RTS_FLOW_CONTROL))) return SP_ERR_ARG; } if (config->rts >= 0) { if (config->rts == SP_RTS_FLOW_CONTROL) { data->term.c_iflag |= CRTSCTS; } else { int controlbits = TIOCM_RTS; if (ioctl(port->fd, config->rts == SP_RTS_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) return SP_ERR_FAIL; } } } if (config->dtr >= 0 || config->dsr >= 0) { /* DTR/DSR flow control not supported yet. */ if (config->dtr == SP_DTR_FLOW_CONTROL || config->dsr == SP_DSR_FLOW_CONTROL) return SP_ERR_ARG; if (config->dtr >= 0) { int controlbits = TIOCM_DTR; if (ioctl(port->fd, config->dtr == SP_DTR_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) return SP_ERR_FAIL; } } if (config->xon_xoff >= 0) { data->term.c_iflag &= ~(IXON | IXOFF | IXANY); switch (config->xon_xoff) { case SP_XONXOFF_DISABLED: break; case SP_XONXOFF_IN: data->term.c_iflag |= IXOFF; break; case SP_XONXOFF_OUT: data->term.c_iflag |= IXON | IXANY; break; case SP_XONXOFF_INOUT: data->term.c_iflag |= IXON | IXOFF | IXANY; break; default: return SP_ERR_ARG; } } if (tcsetattr(port->fd, TCSADRAIN, &data->term) < 0) return SP_ERR_FAIL; #endif return SP_OK; } #define TRY(x) do { int ret = x; if (ret != SP_OK) return ret; } while (0) int sp_set_config(struct sp_port *port, struct sp_port_config *config) { struct sp_port_data data; struct sp_port_config prev_config; TRY(get_config(port, &data, &prev_config)); TRY(set_config(port, &data, config)); return SP_OK; } #define CREATE_SETTER(x) int sp_set_##x(struct sp_port *port, int x) { \ struct sp_port_data data; \ struct sp_port_config config; \ TRY(get_config(port, &data, &config)); \ config.x = x; \ TRY(set_config(port, &data, &config)); \ return SP_OK; \ } CREATE_SETTER(baudrate) CREATE_SETTER(bits) CREATE_SETTER(parity) CREATE_SETTER(stopbits) CREATE_SETTER(rts) CREATE_SETTER(cts) CREATE_SETTER(dtr) CREATE_SETTER(dsr) CREATE_SETTER(xon_xoff) int sp_set_flowcontrol(struct sp_port *port, int flowcontrol) { struct sp_port_data data; struct sp_port_config config; TRY(get_config(port, &data, &config)); if (flowcontrol == SP_FLOWCONTROL_XONXOFF) config.xon_xoff = SP_XONXOFF_INOUT; else config.xon_xoff = SP_XONXOFF_DISABLED; if (flowcontrol == SP_FLOWCONTROL_RTSCTS) { config.rts = SP_RTS_FLOW_CONTROL; config.cts = SP_CTS_FLOW_CONTROL; } else { if (config.rts == SP_RTS_FLOW_CONTROL) config.rts = SP_RTS_ON; config.cts = SP_CTS_IGNORE; } if (flowcontrol == SP_FLOWCONTROL_DTRDSR) { config.dtr = SP_DTR_FLOW_CONTROL; config.dsr = SP_DSR_FLOW_CONTROL; } else { if (config.dtr == SP_DTR_FLOW_CONTROL) config.dtr = SP_DTR_ON; config.dsr = SP_DSR_IGNORE; } TRY(set_config(port, &data, &config)); return SP_OK; } int sp_last_error_code(void) { #ifdef _WIN32 return GetLastError(); #else return errno; #endif } char *sp_last_error_message(void) { #ifdef _WIN32 LPVOID message; DWORD error = GetLastError(); FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &message, 0, NULL ); return message; #else return strerror(errno); #endif } void sp_free_error_message(char *message) { #ifdef _WIN32 LocalFree(message); #else (void)message; #endif }