/* * This file is part of the libserialport project. * * Copyright (C) 2010-2012 Bert Vermeulen * Copyright (C) 2010-2012 Uwe Hermann * Copyright (C) 2013 Martin Ling * Copyright (C) 2013 Matthias Heidbrink * Copyright (C) 2014 Aurelien Jacobs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . */ #include "libserialport.h" #include "libserialport_internal.h" static const struct std_baudrate std_baudrates[] = { #ifdef _WIN32 /* * The baudrates 50/75/134/150/200/1800/230400/460800 do not seem to * have documented CBR_* macros. */ BAUD(110), BAUD(300), BAUD(600), BAUD(1200), BAUD(2400), BAUD(4800), BAUD(9600), BAUD(14400), BAUD(19200), BAUD(38400), BAUD(57600), BAUD(115200), BAUD(128000), BAUD(256000), #else BAUD(50), BAUD(75), BAUD(110), BAUD(134), BAUD(150), BAUD(200), BAUD(300), BAUD(600), BAUD(1200), BAUD(1800), BAUD(2400), BAUD(4800), BAUD(9600), BAUD(19200), BAUD(38400), BAUD(57600), BAUD(115200), BAUD(230400), #if !defined(__APPLE__) && !defined(__OpenBSD__) BAUD(460800), #endif #endif }; #define NUM_STD_BAUDRATES ARRAY_SIZE(std_baudrates) void (*sp_debug_handler)(const char *format, ...) = sp_default_debug_handler; static enum sp_return get_config(struct sp_port *port, struct port_data *data, struct sp_port_config *config); static enum sp_return set_config(struct sp_port *port, struct port_data *data, const struct sp_port_config *config); SP_API enum sp_return sp_get_port_by_name(const char *portname, struct sp_port **port_ptr) { struct sp_port *port; #ifndef NO_PORT_METADATA enum sp_return ret; #endif int len; TRACE("%s, %p", portname, port_ptr); if (!port_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); *port_ptr = NULL; if (!portname) RETURN_ERROR(SP_ERR_ARG, "Null port name"); DEBUG_FMT("Building structure for port %s", portname); if (!(port = malloc(sizeof(struct sp_port)))) RETURN_ERROR(SP_ERR_MEM, "Port structure malloc failed"); len = strlen(portname) + 1; if (!(port->name = malloc(len))) { free(port); RETURN_ERROR(SP_ERR_MEM, "Port name malloc failed"); } memcpy(port->name, portname, len); #ifdef _WIN32 port->usb_path = NULL; port->hdl = INVALID_HANDLE_VALUE; #else port->fd = -1; #endif port->description = NULL; port->transport = SP_TRANSPORT_NATIVE; port->usb_bus = -1; port->usb_address = -1; port->usb_vid = -1; port->usb_pid = -1; port->usb_manufacturer = NULL; port->usb_product = NULL; port->usb_serial = NULL; port->bluetooth_address = NULL; #ifndef NO_PORT_METADATA if ((ret = get_port_details(port)) != SP_OK) { sp_free_port(port); return ret; } #endif *port_ptr = port; RETURN_OK(); } SP_API char *sp_get_port_name(const struct sp_port *port) { TRACE("%p", port); if (!port) return NULL; RETURN_STRING(port->name); } SP_API char *sp_get_port_description(const struct sp_port *port) { TRACE("%p", port); if (!port || !port->description) return NULL; RETURN_STRING(port->description); } SP_API enum sp_transport sp_get_port_transport(const struct sp_port *port) { TRACE("%p", port); if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); RETURN_INT(port->transport); } SP_API enum sp_return sp_get_port_usb_bus_address(const struct sp_port *port, int *usb_bus,int *usb_address) { TRACE("%p", port); if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); if (port->transport != SP_TRANSPORT_USB) RETURN_ERROR(SP_ERR_ARG, "Port does not use USB transport"); if (port->usb_bus < 0 || port->usb_address < 0) RETURN_ERROR(SP_ERR_SUPP, "Bus and address values are not available"); if (usb_bus) *usb_bus = port->usb_bus; if (usb_address) *usb_address = port->usb_address; RETURN_OK(); } SP_API enum sp_return sp_get_port_usb_vid_pid(const struct sp_port *port, int *usb_vid, int *usb_pid) { TRACE("%p", port); if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); if (port->transport != SP_TRANSPORT_USB) RETURN_ERROR(SP_ERR_ARG, "Port does not use USB transport"); if (port->usb_vid < 0 || port->usb_pid < 0) RETURN_ERROR(SP_ERR_SUPP, "VID:PID values are not available"); if (usb_vid) *usb_vid = port->usb_vid; if (usb_pid) *usb_pid = port->usb_pid; RETURN_OK(); } SP_API char *sp_get_port_usb_manufacturer(const struct sp_port *port) { TRACE("%p", port); if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_manufacturer) return NULL; RETURN_STRING(port->usb_manufacturer); } SP_API char *sp_get_port_usb_product(const struct sp_port *port) { TRACE("%p", port); if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_product) return NULL; RETURN_STRING(port->usb_product); } SP_API char *sp_get_port_usb_serial(const struct sp_port *port) { TRACE("%p", port); if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_serial) return NULL; RETURN_STRING(port->usb_serial); } SP_API char *sp_get_port_bluetooth_address(const struct sp_port *port) { TRACE("%p", port); if (!port || port->transport != SP_TRANSPORT_BLUETOOTH || !port->bluetooth_address) return NULL; RETURN_STRING(port->bluetooth_address); } SP_API enum sp_return sp_get_port_handle(const struct sp_port *port, void *result_ptr) { TRACE("%p, %p", port, result_ptr); if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); if (!result_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); #ifdef _WIN32 HANDLE *handle_ptr = result_ptr; *handle_ptr = port->hdl; #else int *fd_ptr = result_ptr; *fd_ptr = port->fd; #endif RETURN_OK(); } SP_API enum sp_return sp_copy_port(const struct sp_port *port, struct sp_port **copy_ptr) { TRACE("%p, %p", port, copy_ptr); if (!copy_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); *copy_ptr = NULL; if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); if (!port->name) RETURN_ERROR(SP_ERR_ARG, "Null port name"); DEBUG("Copying port structure"); RETURN_INT(sp_get_port_by_name(port->name, copy_ptr)); } SP_API void sp_free_port(struct sp_port *port) { TRACE("%p", port); if (!port) { DEBUG("Null port"); RETURN(); } DEBUG("Freeing port structure"); if (port->name) free(port->name); if (port->description) free(port->description); if (port->usb_manufacturer) free(port->usb_manufacturer); if (port->usb_product) free(port->usb_product); if (port->usb_serial) free(port->usb_serial); if (port->bluetooth_address) free(port->bluetooth_address); #ifdef _WIN32 if (port->usb_path) free(port->usb_path); #endif free(port); RETURN(); } SP_PRIV struct sp_port **list_append(struct sp_port **list, const char *portname) { void *tmp; unsigned int count; for (count = 0; list[count]; count++); if (!(tmp = realloc(list, sizeof(struct sp_port *) * (count + 2)))) goto fail; list = tmp; if (sp_get_port_by_name(portname, &list[count]) != SP_OK) goto fail; list[count + 1] = NULL; return list; fail: sp_free_port_list(list); return NULL; } SP_API enum sp_return sp_list_ports(struct sp_port ***list_ptr) { #ifndef NO_ENUMERATION struct sp_port **list; int ret; #endif TRACE("%p", list_ptr); if (!list_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); *list_ptr = NULL; #ifdef NO_ENUMERATION RETURN_ERROR(SP_ERR_SUPP, "Enumeration not supported on this platform"); #else DEBUG("Enumerating ports"); if (!(list = malloc(sizeof(struct sp_port *)))) RETURN_ERROR(SP_ERR_MEM, "Port list malloc failed"); list[0] = NULL; ret = list_ports(&list); if (ret == SP_OK) { *list_ptr = list; } else { sp_free_port_list(list); *list_ptr = NULL; } RETURN_CODEVAL(ret); #endif } SP_API void sp_free_port_list(struct sp_port **list) { unsigned int i; TRACE("%p", list); if (!list) { DEBUG("Null list"); RETURN(); } DEBUG("Freeing port list"); for (i = 0; list[i]; i++) sp_free_port(list[i]); free(list); RETURN(); } #define CHECK_PORT() do { \ if (!port) \ RETURN_ERROR(SP_ERR_ARG, "Null port"); \ if (!port->name) \ RETURN_ERROR(SP_ERR_ARG, "Null port name"); \ } while (0) #ifdef _WIN32 #define CHECK_PORT_HANDLE() do { \ if (port->hdl == INVALID_HANDLE_VALUE) \ RETURN_ERROR(SP_ERR_ARG, "Invalid port handle"); \ } while (0) #else #define CHECK_PORT_HANDLE() do { \ if (port->fd < 0) \ RETURN_ERROR(SP_ERR_ARG, "Invalid port fd"); \ } while (0) #endif #define CHECK_OPEN_PORT() do { \ CHECK_PORT(); \ CHECK_PORT_HANDLE(); \ } while (0) #ifdef WIN32 /** To be called after port receive buffer is emptied. */ static enum sp_return restart_wait(struct sp_port *port) { DWORD wait_result; if (port->wait_running) { /* Check status of running wait operation. */ if (GetOverlappedResult(port->hdl, &port->wait_ovl, &wait_result, FALSE)) { DEBUG("Previous wait completed"); port->wait_running = FALSE; } else if (GetLastError() == ERROR_IO_INCOMPLETE) { DEBUG("Previous wait still running"); RETURN_OK(); } else { RETURN_FAIL("GetOverlappedResult() failed"); } } if (!port->wait_running) { /* Start new wait operation. */ if (WaitCommEvent(port->hdl, &port->events, &port->wait_ovl)) { DEBUG("New wait returned, events already pending"); } else if (GetLastError() == ERROR_IO_PENDING) { DEBUG("New wait running in background"); port->wait_running = TRUE; } else { RETURN_FAIL("WaitCommEvent() failed"); } } RETURN_OK(); } #endif SP_API enum sp_return sp_open(struct sp_port *port, enum sp_mode flags) { struct port_data data; struct sp_port_config config; enum sp_return ret; TRACE("%p, 0x%x", port, flags); CHECK_PORT(); if (flags > SP_MODE_READ_WRITE) RETURN_ERROR(SP_ERR_ARG, "Invalid flags"); DEBUG_FMT("Opening port %s", port->name); #ifdef _WIN32 DWORD desired_access = 0, flags_and_attributes = 0, errors; char *escaped_port_name; COMSTAT status; /* Prefix port name with '\\.\' to work with ports above COM9. */ if (!(escaped_port_name = malloc(strlen(port->name) + 5))) RETURN_ERROR(SP_ERR_MEM, "Escaped port name malloc failed"); sprintf(escaped_port_name, "\\\\.\\%s", port->name); /* Map 'flags' to the OS-specific settings. */ flags_and_attributes = FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED; if (flags & SP_MODE_READ) desired_access |= GENERIC_READ; if (flags & SP_MODE_WRITE) desired_access |= GENERIC_WRITE; port->hdl = CreateFile(escaped_port_name, desired_access, 0, 0, OPEN_EXISTING, flags_and_attributes, 0); free(escaped_port_name); if (port->hdl == INVALID_HANDLE_VALUE) RETURN_FAIL("Port CreateFile() failed"); /* All timeouts initially disabled. */ port->timeouts.ReadIntervalTimeout = 0; port->timeouts.ReadTotalTimeoutMultiplier = 0; port->timeouts.ReadTotalTimeoutConstant = 0; port->timeouts.WriteTotalTimeoutMultiplier = 0; port->timeouts.WriteTotalTimeoutConstant = 0; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) { sp_close(port); RETURN_FAIL("SetCommTimeouts() failed"); } /* Prepare OVERLAPPED structures. */ #define INIT_OVERLAPPED(ovl) do { \ memset(&port->ovl, 0, sizeof(port->ovl)); \ port->ovl.hEvent = INVALID_HANDLE_VALUE; \ if ((port->ovl.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL)) \ == INVALID_HANDLE_VALUE) { \ sp_close(port); \ RETURN_FAIL(#ovl "CreateEvent() failed"); \ } \ } while (0) INIT_OVERLAPPED(read_ovl); INIT_OVERLAPPED(write_ovl); INIT_OVERLAPPED(wait_ovl); /* Set event mask for RX and error events. */ if (SetCommMask(port->hdl, EV_RXCHAR | EV_ERR) == 0) { sp_close(port); RETURN_FAIL("SetCommMask() failed"); } port->writing = FALSE; port->wait_running = FALSE; ret = restart_wait(port); if (ret < 0) { sp_close(port); RETURN_CODEVAL(ret); } #else int flags_local = O_NONBLOCK | O_NOCTTY; /* Map 'flags' to the OS-specific settings. */ if ((flags & SP_MODE_READ_WRITE) == SP_MODE_READ_WRITE) flags_local |= O_RDWR; else if (flags & SP_MODE_READ) flags_local |= O_RDONLY; else if (flags & SP_MODE_WRITE) flags_local |= O_WRONLY; if ((port->fd = open(port->name, flags_local)) < 0) RETURN_FAIL("open() failed"); #endif ret = get_config(port, &data, &config); if (ret < 0) { sp_close(port); RETURN_CODEVAL(ret); } /* Set sane port settings. */ #ifdef _WIN32 data.dcb.fBinary = TRUE; data.dcb.fDsrSensitivity = FALSE; data.dcb.fErrorChar = FALSE; data.dcb.fNull = FALSE; data.dcb.fAbortOnError = FALSE; #else /* Turn off all fancy termios tricks, give us a raw channel. */ data.term.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL | IMAXBEL); #ifdef IUCLC data.term.c_iflag &= ~IUCLC; #endif data.term.c_oflag &= ~(OPOST | ONLCR | OCRNL | ONOCR | ONLRET); #ifdef OLCUC data.term.c_oflag &= ~OLCUC; #endif #ifdef NLDLY data.term.c_oflag &= ~NLDLY; #endif #ifdef CRDLY data.term.c_oflag &= ~CRDLY; #endif #ifdef TABDLY data.term.c_oflag &= ~TABDLY; #endif #ifdef BSDLY data.term.c_oflag &= ~BSDLY; #endif #ifdef VTDLY data.term.c_oflag &= ~VTDLY; #endif #ifdef FFDLY data.term.c_oflag &= ~FFDLY; #endif #ifdef OFILL data.term.c_oflag &= ~OFILL; #endif data.term.c_lflag &= ~(ISIG | ICANON | ECHO | IEXTEN); data.term.c_cc[VMIN] = 0; data.term.c_cc[VTIME] = 0; /* Ignore modem status lines; enable receiver; leave control lines alone on close. */ data.term.c_cflag |= (CLOCAL | CREAD | HUPCL); #endif #ifdef _WIN32 if (ClearCommError(port->hdl, &errors, &status) == 0) RETURN_FAIL("ClearCommError() failed"); #endif ret = set_config(port, &data, &config); if (ret < 0) { sp_close(port); RETURN_CODEVAL(ret); } RETURN_OK(); } SP_API enum sp_return sp_close(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); DEBUG_FMT("Closing port %s", port->name); #ifdef _WIN32 /* Returns non-zero upon success, 0 upon failure. */ if (CloseHandle(port->hdl) == 0) RETURN_FAIL("Port CloseHandle() failed"); port->hdl = INVALID_HANDLE_VALUE; /* Close event handles for overlapped structures. */ #define CLOSE_OVERLAPPED(ovl) do { \ if (port->ovl.hEvent != INVALID_HANDLE_VALUE && \ CloseHandle(port->ovl.hEvent) == 0) \ RETURN_FAIL(# ovl "event CloseHandle() failed"); \ } while (0) CLOSE_OVERLAPPED(read_ovl); CLOSE_OVERLAPPED(write_ovl); CLOSE_OVERLAPPED(wait_ovl); #else /* Returns 0 upon success, -1 upon failure. */ if (close(port->fd) == -1) RETURN_FAIL("close() failed"); port->fd = -1; #endif RETURN_OK(); } SP_API enum sp_return sp_flush(struct sp_port *port, enum sp_buffer buffers) { TRACE("%p, 0x%x", port, buffers); CHECK_OPEN_PORT(); if (buffers > SP_BUF_BOTH) RETURN_ERROR(SP_ERR_ARG, "Invalid buffer selection"); const char *buffer_names[] = {"no", "input", "output", "both"}; DEBUG_FMT("Flushing %s buffers on port %s", buffer_names[buffers], port->name); #ifdef _WIN32 DWORD flags = 0; if (buffers & SP_BUF_INPUT) flags |= PURGE_RXCLEAR; if (buffers & SP_BUF_OUTPUT) flags |= PURGE_TXCLEAR; /* Returns non-zero upon success, 0 upon failure. */ if (PurgeComm(port->hdl, flags) == 0) RETURN_FAIL("PurgeComm() failed"); if (buffers & SP_BUF_INPUT) TRY(restart_wait(port)); #else int flags = 0; if (buffers == SP_BUF_BOTH) flags = TCIOFLUSH; else if (buffers == SP_BUF_INPUT) flags = TCIFLUSH; else if (buffers == SP_BUF_OUTPUT) flags = TCOFLUSH; /* Returns 0 upon success, -1 upon failure. */ if (tcflush(port->fd, flags) < 0) RETURN_FAIL("tcflush() failed"); #endif RETURN_OK(); } SP_API enum sp_return sp_drain(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); DEBUG_FMT("Draining port %s", port->name); #ifdef _WIN32 /* Returns non-zero upon success, 0 upon failure. */ if (FlushFileBuffers(port->hdl) == 0) RETURN_FAIL("FlushFileBuffers() failed"); RETURN_OK(); #else int result; while (1) { #ifdef __ANDROID__ int arg = 1; result = ioctl(port->fd, TCSBRK, &arg); #else result = tcdrain(port->fd); #endif if (result < 0) { if (errno == EINTR) { DEBUG("tcdrain() was interrupted"); continue; } else { RETURN_FAIL("tcdrain() failed"); } } else { RETURN_OK(); } } #endif } SP_API enum sp_return sp_blocking_write(struct sp_port *port, const void *buf, size_t count, unsigned int timeout_ms) { TRACE("%p, %p, %d, %d", port, buf, count, timeout_ms); CHECK_OPEN_PORT(); if (!buf) RETURN_ERROR(SP_ERR_ARG, "Null buffer"); if (timeout_ms) DEBUG_FMT("Writing %d bytes to port %s, timeout %d ms", count, port->name, timeout_ms); else DEBUG_FMT("Writing %d bytes to port %s, no timeout", count, port->name); if (count == 0) RETURN_INT(0); #ifdef _WIN32 DWORD bytes_written = 0; BOOL result; /* Wait for previous non-blocking write to complete, if any. */ if (port->writing) { DEBUG("Waiting for previous write to complete"); result = GetOverlappedResult(port->hdl, &port->write_ovl, &bytes_written, TRUE); port->writing = 0; if (!result) RETURN_FAIL("Previous write failed to complete"); DEBUG("Previous write completed"); } /* Set timeout. */ if (port->timeouts.WriteTotalTimeoutConstant != timeout_ms) { port->timeouts.WriteTotalTimeoutConstant = timeout_ms; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) RETURN_FAIL("SetCommTimeouts() failed"); } /* Start write. */ if (WriteFile(port->hdl, buf, count, NULL, &port->write_ovl)) { DEBUG("Write completed immediately"); RETURN_INT(count); } else if (GetLastError() == ERROR_IO_PENDING) { DEBUG("Waiting for write to complete"); if (GetOverlappedResult(port->hdl, &port->write_ovl, &bytes_written, TRUE) == 0) RETURN_FAIL("GetOverlappedResult() failed"); DEBUG_FMT("Write completed, %d/%d bytes written", bytes_written, count); RETURN_INT(bytes_written); } else { RETURN_FAIL("WriteFile() failed"); } #else size_t bytes_written = 0; unsigned char *ptr = (unsigned char *) buf; struct timeval start, delta, now, end = {0, 0}; int started = 0; fd_set fds; int result; if (timeout_ms) { /* Get time at start of operation. */ gettimeofday(&start, NULL); /* Define duration of timeout. */ delta.tv_sec = timeout_ms / 1000; delta.tv_usec = (timeout_ms % 1000) * 1000; /* Calculate time at which we should give up. */ timeradd(&start, &delta, &end); } FD_ZERO(&fds); FD_SET(port->fd, &fds); /* Loop until we have written the requested number of bytes. */ while (bytes_written < count) { /* * Check timeout only if we have run select() at least once, * to avoid any issues if a short timeout is reached before * select() is even run. */ if (timeout_ms && started) { gettimeofday(&now, NULL); if (timercmp(&now, &end, >)) /* Timeout has expired. */ break; timersub(&end, &now, &delta); } result = select(port->fd + 1, NULL, &fds, NULL, timeout_ms ? &delta : NULL); started = 1; if (result < 0) { if (errno == EINTR) { DEBUG("select() call was interrupted, repeating"); continue; } else { RETURN_FAIL("select() failed"); } } else if (result == 0) { /* Timeout has expired. */ break; } /* Do write. */ result = write(port->fd, ptr, count - bytes_written); if (result < 0) { if (errno == EAGAIN) /* This shouldn't happen because we did a select() first, but handle anyway. */ continue; else /* This is an actual failure. */ RETURN_FAIL("write() failed"); } bytes_written += result; ptr += result; } if (bytes_written < count) DEBUG("Write timed out"); RETURN_INT(bytes_written); #endif } SP_API enum sp_return sp_nonblocking_write(struct sp_port *port, const void *buf, size_t count) { TRACE("%p, %p, %d", port, buf, count); CHECK_OPEN_PORT(); if (!buf) RETURN_ERROR(SP_ERR_ARG, "Null buffer"); DEBUG_FMT("Writing up to %d bytes to port %s", count, port->name); if (count == 0) RETURN_INT(0); #ifdef _WIN32 DWORD written = 0; BYTE *ptr = (BYTE *) buf; /* Check whether previous write is complete. */ if (port->writing) { if (HasOverlappedIoCompleted(&port->write_ovl)) { DEBUG("Previous write completed"); port->writing = 0; } else { DEBUG("Previous write not complete"); /* Can't take a new write until the previous one finishes. */ RETURN_INT(0); } } /* Set timeout. */ if (port->timeouts.WriteTotalTimeoutConstant != 0) { port->timeouts.WriteTotalTimeoutConstant = 0; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) RETURN_FAIL("SetCommTimeouts() failed"); } /* * Keep writing data until the OS has to actually start an async IO * for it. At that point we know the buffer is full. */ while (written < count) { /* Copy first byte of user buffer. */ port->pending_byte = *ptr++; /* Start asynchronous write. */ if (WriteFile(port->hdl, &port->pending_byte, 1, NULL, &port->write_ovl) == 0) { if (GetLastError() == ERROR_IO_PENDING) { if (HasOverlappedIoCompleted(&port->write_ovl)) { DEBUG("Asynchronous write completed immediately"); port->writing = 0; written++; continue; } else { DEBUG("Asynchronous write running"); port->writing = 1; RETURN_INT(++written); } } else { /* Actual failure of some kind. */ RETURN_FAIL("WriteFile() failed"); } } else { DEBUG("Single byte written immediately"); written++; } } DEBUG("All bytes written immediately"); RETURN_INT(written); #else /* Returns the number of bytes written, or -1 upon failure. */ ssize_t written = write(port->fd, buf, count); if (written < 0) RETURN_FAIL("write() failed"); else RETURN_INT(written); #endif } #ifdef _WIN32 /* Restart wait operation if buffer was emptied. */ static enum sp_return restart_wait_if_needed(struct sp_port *port, unsigned int bytes_read) { DWORD errors; COMSTAT comstat; if (bytes_read == 0) RETURN_OK(); if (ClearCommError(port->hdl, &errors, &comstat) == 0) RETURN_FAIL("ClearCommError() failed"); if (comstat.cbInQue == 0) TRY(restart_wait(port)); RETURN_OK(); } #endif SP_API enum sp_return sp_blocking_read(struct sp_port *port, void *buf, size_t count, unsigned int timeout_ms) { TRACE("%p, %p, %d, %d", port, buf, count, timeout_ms); CHECK_OPEN_PORT(); if (!buf) RETURN_ERROR(SP_ERR_ARG, "Null buffer"); if (timeout_ms) DEBUG_FMT("Reading %d bytes from port %s, timeout %d ms", count, port->name, timeout_ms); else DEBUG_FMT("Reading %d bytes from port %s, no timeout", count, port->name); if (count == 0) RETURN_INT(0); #ifdef _WIN32 DWORD bytes_read = 0; /* Set timeout. */ if (port->timeouts.ReadIntervalTimeout != 0 || port->timeouts.ReadTotalTimeoutMultiplier != 0 || port->timeouts.ReadTotalTimeoutConstant != timeout_ms) { port->timeouts.ReadIntervalTimeout = 0; port->timeouts.ReadTotalTimeoutMultiplier = 0; port->timeouts.ReadTotalTimeoutConstant = timeout_ms; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) RETURN_FAIL("SetCommTimeouts() failed"); } /* Start read. */ if (ReadFile(port->hdl, buf, count, NULL, &port->read_ovl)) { DEBUG("Read completed immediately"); bytes_read = count; } else if (GetLastError() == ERROR_IO_PENDING) { DEBUG("Waiting for read to complete"); if (GetOverlappedResult(port->hdl, &port->read_ovl, &bytes_read, TRUE) == 0) RETURN_FAIL("GetOverlappedResult() failed"); DEBUG_FMT("Read completed, %d/%d bytes read", bytes_read, count); } else { RETURN_FAIL("ReadFile() failed"); } TRY(restart_wait_if_needed(port, bytes_read)); RETURN_INT(bytes_read); #else size_t bytes_read = 0; unsigned char *ptr = (unsigned char *) buf; struct timeval start, delta, now, end = {0, 0}; int started = 0; fd_set fds; int result; if (timeout_ms) { /* Get time at start of operation. */ gettimeofday(&start, NULL); /* Define duration of timeout. */ delta.tv_sec = timeout_ms / 1000; delta.tv_usec = (timeout_ms % 1000) * 1000; /* Calculate time at which we should give up. */ timeradd(&start, &delta, &end); } FD_ZERO(&fds); FD_SET(port->fd, &fds); /* Loop until we have the requested number of bytes. */ while (bytes_read < count) { /* * Check timeout only if we have run select() at least once, * to avoid any issues if a short timeout is reached before * select() is even run. */ if (timeout_ms && started) { gettimeofday(&now, NULL); if (timercmp(&now, &end, >)) /* Timeout has expired. */ break; timersub(&end, &now, &delta); } result = select(port->fd + 1, &fds, NULL, NULL, timeout_ms ? &delta : NULL); started = 1; if (result < 0) { if (errno == EINTR) { DEBUG("select() call was interrupted, repeating"); continue; } else { RETURN_FAIL("select() failed"); } } else if (result == 0) { /* Timeout has expired. */ break; } /* Do read. */ result = read(port->fd, ptr, count - bytes_read); if (result < 0) { if (errno == EAGAIN) /* * This shouldn't happen because we did a * select() first, but handle anyway. */ continue; else /* This is an actual failure. */ RETURN_FAIL("read() failed"); } bytes_read += result; ptr += result; } if (bytes_read < count) DEBUG("Read timed out"); RETURN_INT(bytes_read); #endif } SP_API enum sp_return sp_blocking_read_next(struct sp_port *port, void *buf, size_t count, unsigned int timeout_ms) { TRACE("%p, %p, %d, %d", port, buf, count, timeout_ms); CHECK_OPEN_PORT(); if (!buf) RETURN_ERROR(SP_ERR_ARG, "Null buffer"); if (count == 0) RETURN_ERROR(SP_ERR_ARG, "Zero count"); if (timeout_ms) DEBUG_FMT("Reading next max %d bytes from port %s, timeout %d ms", count, port->name, timeout_ms); else DEBUG_FMT("Reading next max %d bytes from port %s, no timeout", count, port->name); #ifdef _WIN32 DWORD bytes_read = 0; /* If timeout_ms == 0, set maximum timeout. */ DWORD timeout_val = (timeout_ms == 0 ? MAXDWORD - 1 : timeout_ms); /* Set timeout. */ if (port->timeouts.ReadIntervalTimeout != MAXDWORD || port->timeouts.ReadTotalTimeoutMultiplier != MAXDWORD || port->timeouts.ReadTotalTimeoutConstant != timeout_val) { port->timeouts.ReadIntervalTimeout = MAXDWORD; port->timeouts.ReadTotalTimeoutMultiplier = MAXDWORD; port->timeouts.ReadTotalTimeoutConstant = timeout_val; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) RETURN_FAIL("SetCommTimeouts() failed"); } /* Loop until we have at least one byte, or timeout is reached. */ while (bytes_read == 0) { /* Start read. */ if (ReadFile(port->hdl, buf, count, NULL, &port->read_ovl)) { DEBUG("Read completed immediately"); bytes_read = count; } else if (GetLastError() == ERROR_IO_PENDING) { DEBUG("Waiting for read to complete"); if (GetOverlappedResult(port->hdl, &port->read_ovl, &bytes_read, TRUE) == 0) RETURN_FAIL("GetOverlappedResult() failed"); if (bytes_read > 0) { DEBUG("Read completed"); } else if (timeout_ms > 0) { DEBUG("Read timed out"); break; } else { DEBUG("Restarting read"); } } else { RETURN_FAIL("ReadFile() failed"); } } TRY(restart_wait_if_needed(port, bytes_read)); RETURN_INT(bytes_read); #else size_t bytes_read = 0; struct timeval start, delta, now, end = {0, 0}; int started = 0; fd_set fds; int result; if (timeout_ms) { /* Get time at start of operation. */ gettimeofday(&start, NULL); /* Define duration of timeout. */ delta.tv_sec = timeout_ms / 1000; delta.tv_usec = (timeout_ms % 1000) * 1000; /* Calculate time at which we should give up. */ timeradd(&start, &delta, &end); } FD_ZERO(&fds); FD_SET(port->fd, &fds); /* Loop until we have at least one byte, or timeout is reached. */ while (bytes_read == 0) { /* * Check timeout only if we have run select() at least once, * to avoid any issues if a short timeout is reached before * select() is even run. */ if (timeout_ms && started) { gettimeofday(&now, NULL); if (timercmp(&now, &end, >)) /* Timeout has expired. */ break; timersub(&end, &now, &delta); } result = select(port->fd + 1, &fds, NULL, NULL, timeout_ms ? &delta : NULL); started = 1; if (result < 0) { if (errno == EINTR) { DEBUG("select() call was interrupted, repeating"); continue; } else { RETURN_FAIL("select() failed"); } } else if (result == 0) { /* Timeout has expired. */ break; } /* Do read. */ result = read(port->fd, buf, count); if (result < 0) { if (errno == EAGAIN) /* This shouldn't happen because we did a select() first, but handle anyway. */ continue; else /* This is an actual failure. */ RETURN_FAIL("read() failed"); } bytes_read = result; } if (bytes_read == 0) DEBUG("Read timed out"); RETURN_INT(bytes_read); #endif } SP_API enum sp_return sp_nonblocking_read(struct sp_port *port, void *buf, size_t count) { TRACE("%p, %p, %d", port, buf, count); CHECK_OPEN_PORT(); if (!buf) RETURN_ERROR(SP_ERR_ARG, "Null buffer"); DEBUG_FMT("Reading up to %d bytes from port %s", count, port->name); #ifdef _WIN32 DWORD bytes_read; /* Set timeout. */ if (port->timeouts.ReadIntervalTimeout != MAXDWORD || port->timeouts.ReadTotalTimeoutMultiplier != 0 || port->timeouts.ReadTotalTimeoutConstant != 0) { port->timeouts.ReadIntervalTimeout = MAXDWORD; port->timeouts.ReadTotalTimeoutMultiplier = 0; port->timeouts.ReadTotalTimeoutConstant = 0; if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) RETURN_FAIL("SetCommTimeouts() failed"); } /* Do read. */ if (ReadFile(port->hdl, buf, count, NULL, &port->read_ovl) == 0) RETURN_FAIL("ReadFile() failed"); /* Get number of bytes read. */ if (GetOverlappedResult(port->hdl, &port->read_ovl, &bytes_read, TRUE) == 0) RETURN_FAIL("GetOverlappedResult() failed"); TRY(restart_wait_if_needed(port, bytes_read)); RETURN_INT(bytes_read); #else ssize_t bytes_read; /* Returns the number of bytes read, or -1 upon failure. */ if ((bytes_read = read(port->fd, buf, count)) < 0) { if (errno == EAGAIN) /* No bytes available. */ bytes_read = 0; else /* This is an actual failure. */ RETURN_FAIL("read() failed"); } RETURN_INT(bytes_read); #endif } SP_API enum sp_return sp_input_waiting(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); DEBUG_FMT("Checking input bytes waiting on port %s", port->name); #ifdef _WIN32 DWORD errors; COMSTAT comstat; if (ClearCommError(port->hdl, &errors, &comstat) == 0) RETURN_FAIL("ClearCommError() failed"); RETURN_INT(comstat.cbInQue); #else int bytes_waiting; if (ioctl(port->fd, TIOCINQ, &bytes_waiting) < 0) RETURN_FAIL("TIOCINQ ioctl failed"); RETURN_INT(bytes_waiting); #endif } SP_API enum sp_return sp_output_waiting(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); DEBUG_FMT("Checking output bytes waiting on port %s", port->name); #ifdef _WIN32 DWORD errors; COMSTAT comstat; if (ClearCommError(port->hdl, &errors, &comstat) == 0) RETURN_FAIL("ClearCommError() failed"); RETURN_INT(comstat.cbOutQue); #else int bytes_waiting; if (ioctl(port->fd, TIOCOUTQ, &bytes_waiting) < 0) RETURN_FAIL("TIOCOUTQ ioctl failed"); RETURN_INT(bytes_waiting); #endif } SP_API enum sp_return sp_new_event_set(struct sp_event_set **result_ptr) { struct sp_event_set *result; TRACE("%p", result_ptr); if (!result_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result"); *result_ptr = NULL; if (!(result = malloc(sizeof(struct sp_event_set)))) RETURN_ERROR(SP_ERR_MEM, "sp_event_set malloc() failed"); memset(result, 0, sizeof(struct sp_event_set)); *result_ptr = result; RETURN_OK(); } static enum sp_return add_handle(struct sp_event_set *event_set, event_handle handle, enum sp_event mask) { void *new_handles; enum sp_event *new_masks; TRACE("%p, %d, %d", event_set, handle, mask); if (!(new_handles = realloc(event_set->handles, sizeof(event_handle) * (event_set->count + 1)))) RETURN_ERROR(SP_ERR_MEM, "Handle array realloc() failed"); event_set->handles = new_handles; if (!(new_masks = realloc(event_set->masks, sizeof(enum sp_event) * (event_set->count + 1)))) RETURN_ERROR(SP_ERR_MEM, "Mask array realloc() failed"); event_set->masks = new_masks; ((event_handle *) event_set->handles)[event_set->count] = handle; event_set->masks[event_set->count] = mask; event_set->count++; RETURN_OK(); } SP_API enum sp_return sp_add_port_events(struct sp_event_set *event_set, const struct sp_port *port, enum sp_event mask) { TRACE("%p, %p, %d", event_set, port, mask); if (!event_set) RETURN_ERROR(SP_ERR_ARG, "Null event set"); if (!port) RETURN_ERROR(SP_ERR_ARG, "Null port"); if (mask > (SP_EVENT_RX_READY | SP_EVENT_TX_READY | SP_EVENT_ERROR)) RETURN_ERROR(SP_ERR_ARG, "Invalid event mask"); if (!mask) RETURN_OK(); #ifdef _WIN32 enum sp_event handle_mask; if ((handle_mask = mask & SP_EVENT_TX_READY)) TRY(add_handle(event_set, port->write_ovl.hEvent, handle_mask)); if ((handle_mask = mask & (SP_EVENT_RX_READY | SP_EVENT_ERROR))) TRY(add_handle(event_set, port->wait_ovl.hEvent, handle_mask)); #else TRY(add_handle(event_set, port->fd, mask)); #endif RETURN_OK(); } SP_API void sp_free_event_set(struct sp_event_set *event_set) { TRACE("%p", event_set); if (!event_set) { DEBUG("Null event set"); RETURN(); } DEBUG("Freeing event set"); if (event_set->handles) free(event_set->handles); if (event_set->masks) free(event_set->masks); free(event_set); RETURN(); } SP_API enum sp_return sp_wait(struct sp_event_set *event_set, unsigned int timeout_ms) { TRACE("%p, %d", event_set, timeout_ms); if (!event_set) RETURN_ERROR(SP_ERR_ARG, "Null event set"); #ifdef _WIN32 if (WaitForMultipleObjects(event_set->count, event_set->handles, FALSE, timeout_ms ? timeout_ms : INFINITE) == WAIT_FAILED) RETURN_FAIL("WaitForMultipleObjects() failed"); RETURN_OK(); #else struct timeval start, delta, now, end = {0, 0}; int started = 0; int result, timeout_remaining_ms; struct pollfd *pollfds; unsigned int i; if (!(pollfds = malloc(sizeof(struct pollfd) * event_set->count))) RETURN_ERROR(SP_ERR_MEM, "pollfds malloc() failed"); for (i = 0; i < event_set->count; i++) { pollfds[i].fd = ((int *) event_set->handles)[i]; pollfds[i].events = 0; pollfds[i].revents = 0; if (event_set->masks[i] & SP_EVENT_RX_READY) pollfds[i].events |= POLLIN; if (event_set->masks[i] & SP_EVENT_TX_READY) pollfds[i].events |= POLLOUT; if (event_set->masks[i] & SP_EVENT_ERROR) pollfds[i].events |= POLLERR; } if (timeout_ms) { /* Get time at start of operation. */ gettimeofday(&start, NULL); /* Define duration of timeout. */ delta.tv_sec = timeout_ms / 1000; delta.tv_usec = (timeout_ms % 1000) * 1000; /* Calculate time at which we should give up. */ timeradd(&start, &delta, &end); } /* Loop until an event occurs. */ while (1) { /* * Check timeout only if we have run poll() at least once, * to avoid any issues if a short timeout is reached before * poll() is even run. */ if (timeout_ms && started) { gettimeofday(&now, NULL); if (timercmp(&now, &end, >)) { DEBUG("Wait timed out"); break; } timersub(&end, &now, &delta); timeout_remaining_ms = delta.tv_sec * 1000 + delta.tv_usec / 1000; } result = poll(pollfds, event_set->count, timeout_ms ? timeout_remaining_ms : -1); started = 1; if (result < 0) { if (errno == EINTR) { DEBUG("poll() call was interrupted, repeating"); continue; } else { free(pollfds); RETURN_FAIL("poll() failed"); } } else if (result == 0) { DEBUG("poll() timed out"); break; } else { DEBUG("poll() completed"); break; } } free(pollfds); RETURN_OK(); #endif } #ifdef USE_TERMIOS_SPEED static enum sp_return get_baudrate(int fd, int *baudrate) { void *data; TRACE("%d, %p", fd, baudrate); DEBUG("Getting baud rate"); if (!(data = malloc(get_termios_size()))) RETURN_ERROR(SP_ERR_MEM, "termios malloc failed"); if (ioctl(fd, get_termios_get_ioctl(), data) < 0) { free(data); RETURN_FAIL("Getting termios failed"); } *baudrate = get_termios_speed(data); free(data); RETURN_OK(); } static enum sp_return set_baudrate(int fd, int baudrate) { void *data; TRACE("%d, %d", fd, baudrate); DEBUG("Getting baud rate"); if (!(data = malloc(get_termios_size()))) RETURN_ERROR(SP_ERR_MEM, "termios malloc failed"); if (ioctl(fd, get_termios_get_ioctl(), data) < 0) { free(data); RETURN_FAIL("Getting termios failed"); } DEBUG("Setting baud rate"); set_termios_speed(data, baudrate); if (ioctl(fd, get_termios_set_ioctl(), data) < 0) { free(data); RETURN_FAIL("Setting termios failed"); } free(data); RETURN_OK(); } #endif /* USE_TERMIOS_SPEED */ #ifdef USE_TERMIOX static enum sp_return get_flow(int fd, struct port_data *data) { void *termx; TRACE("%d, %p", fd, data); DEBUG("Getting advanced flow control"); if (!(termx = malloc(get_termiox_size()))) RETURN_ERROR(SP_ERR_MEM, "termiox malloc failed"); if (ioctl(fd, TCGETX, termx) < 0) { free(termx); RETURN_FAIL("Getting termiox failed"); } get_termiox_flow(termx, &data->rts_flow, &data->cts_flow, &data->dtr_flow, &data->dsr_flow); free(termx); RETURN_OK(); } static enum sp_return set_flow(int fd, struct port_data *data) { void *termx; TRACE("%d, %p", fd, data); DEBUG("Getting advanced flow control"); if (!(termx = malloc(get_termiox_size()))) RETURN_ERROR(SP_ERR_MEM, "termiox malloc failed"); if (ioctl(fd, TCGETX, termx) < 0) { free(termx); RETURN_FAIL("Getting termiox failed"); } DEBUG("Setting advanced flow control"); set_termiox_flow(termx, data->rts_flow, data->cts_flow, data->dtr_flow, data->dsr_flow); if (ioctl(fd, TCSETX, termx) < 0) { free(termx); RETURN_FAIL("Setting termiox failed"); } free(termx); RETURN_OK(); } #endif /* USE_TERMIOX */ static enum sp_return get_config(struct sp_port *port, struct port_data *data, struct sp_port_config *config) { unsigned int i; TRACE("%p, %p, %p", port, data, config); DEBUG_FMT("Getting configuration for port %s", port->name); #ifdef _WIN32 if (!GetCommState(port->hdl, &data->dcb)) RETURN_FAIL("GetCommState() failed"); for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (data->dcb.BaudRate == std_baudrates[i].index) { config->baudrate = std_baudrates[i].value; break; } } if (i == NUM_STD_BAUDRATES) /* BaudRate field can be either an index or a custom baud rate. */ config->baudrate = data->dcb.BaudRate; config->bits = data->dcb.ByteSize; if (data->dcb.fParity) switch (data->dcb.Parity) { case NOPARITY: config->parity = SP_PARITY_NONE; break; case ODDPARITY: config->parity = SP_PARITY_ODD; break; case EVENPARITY: config->parity = SP_PARITY_EVEN; break; case MARKPARITY: config->parity = SP_PARITY_MARK; break; case SPACEPARITY: config->parity = SP_PARITY_SPACE; break; default: config->parity = -1; } else config->parity = SP_PARITY_NONE; switch (data->dcb.StopBits) { case ONESTOPBIT: config->stopbits = 1; break; case TWOSTOPBITS: config->stopbits = 2; break; default: config->stopbits = -1; } switch (data->dcb.fRtsControl) { case RTS_CONTROL_DISABLE: config->rts = SP_RTS_OFF; break; case RTS_CONTROL_ENABLE: config->rts = SP_RTS_ON; break; case RTS_CONTROL_HANDSHAKE: config->rts = SP_RTS_FLOW_CONTROL; break; default: config->rts = -1; } config->cts = data->dcb.fOutxCtsFlow ? SP_CTS_FLOW_CONTROL : SP_CTS_IGNORE; switch (data->dcb.fDtrControl) { case DTR_CONTROL_DISABLE: config->dtr = SP_DTR_OFF; break; case DTR_CONTROL_ENABLE: config->dtr = SP_DTR_ON; break; case DTR_CONTROL_HANDSHAKE: config->dtr = SP_DTR_FLOW_CONTROL; break; default: config->dtr = -1; } config->dsr = data->dcb.fOutxDsrFlow ? SP_DSR_FLOW_CONTROL : SP_DSR_IGNORE; if (data->dcb.fInX) { if (data->dcb.fOutX) config->xon_xoff = SP_XONXOFF_INOUT; else config->xon_xoff = SP_XONXOFF_IN; } else { if (data->dcb.fOutX) config->xon_xoff = SP_XONXOFF_OUT; else config->xon_xoff = SP_XONXOFF_DISABLED; } #else // !_WIN32 if (tcgetattr(port->fd, &data->term) < 0) RETURN_FAIL("tcgetattr() failed"); if (ioctl(port->fd, TIOCMGET, &data->controlbits) < 0) RETURN_FAIL("TIOCMGET ioctl failed"); #ifdef USE_TERMIOX int ret = get_flow(port->fd, data); if (ret == SP_ERR_FAIL && errno == EINVAL) data->termiox_supported = 0; else if (ret < 0) RETURN_CODEVAL(ret); else data->termiox_supported = 1; #else data->termiox_supported = 0; #endif for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (cfgetispeed(&data->term) == std_baudrates[i].index) { config->baudrate = std_baudrates[i].value; break; } } if (i == NUM_STD_BAUDRATES) { #ifdef __APPLE__ config->baudrate = (int)data->term.c_ispeed; #elif defined(USE_TERMIOS_SPEED) TRY(get_baudrate(port->fd, &config->baudrate)); #else config->baudrate = -1; #endif } switch (data->term.c_cflag & CSIZE) { case CS8: config->bits = 8; break; case CS7: config->bits = 7; break; case CS6: config->bits = 6; break; case CS5: config->bits = 5; break; default: config->bits = -1; } if (!(data->term.c_cflag & PARENB) && (data->term.c_iflag & IGNPAR)) config->parity = SP_PARITY_NONE; else if (!(data->term.c_cflag & PARENB) || (data->term.c_iflag & IGNPAR)) config->parity = -1; #ifdef CMSPAR else if (data->term.c_cflag & CMSPAR) config->parity = (data->term.c_cflag & PARODD) ? SP_PARITY_MARK : SP_PARITY_SPACE; #endif else config->parity = (data->term.c_cflag & PARODD) ? SP_PARITY_ODD : SP_PARITY_EVEN; config->stopbits = (data->term.c_cflag & CSTOPB) ? 2 : 1; if (data->term.c_cflag & CRTSCTS) { config->rts = SP_RTS_FLOW_CONTROL; config->cts = SP_CTS_FLOW_CONTROL; } else { if (data->termiox_supported && data->rts_flow) config->rts = SP_RTS_FLOW_CONTROL; else config->rts = (data->controlbits & TIOCM_RTS) ? SP_RTS_ON : SP_RTS_OFF; config->cts = (data->termiox_supported && data->cts_flow) ? SP_CTS_FLOW_CONTROL : SP_CTS_IGNORE; } if (data->termiox_supported && data->dtr_flow) config->dtr = SP_DTR_FLOW_CONTROL; else config->dtr = (data->controlbits & TIOCM_DTR) ? SP_DTR_ON : SP_DTR_OFF; config->dsr = (data->termiox_supported && data->dsr_flow) ? SP_DSR_FLOW_CONTROL : SP_DSR_IGNORE; if (data->term.c_iflag & IXOFF) { if (data->term.c_iflag & IXON) config->xon_xoff = SP_XONXOFF_INOUT; else config->xon_xoff = SP_XONXOFF_IN; } else { if (data->term.c_iflag & IXON) config->xon_xoff = SP_XONXOFF_OUT; else config->xon_xoff = SP_XONXOFF_DISABLED; } #endif RETURN_OK(); } static enum sp_return set_config(struct sp_port *port, struct port_data *data, const struct sp_port_config *config) { unsigned int i; #ifdef __APPLE__ BAUD_TYPE baud_nonstd; baud_nonstd = B0; #endif #ifdef USE_TERMIOS_SPEED int baud_nonstd = 0; #endif TRACE("%p, %p, %p", port, data, config); DEBUG_FMT("Setting configuration for port %s", port->name); #ifdef _WIN32 if (config->baudrate >= 0) { for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (config->baudrate == std_baudrates[i].value) { data->dcb.BaudRate = std_baudrates[i].index; break; } } if (i == NUM_STD_BAUDRATES) data->dcb.BaudRate = config->baudrate; } if (config->bits >= 0) data->dcb.ByteSize = config->bits; if (config->parity >= 0) { switch (config->parity) { case SP_PARITY_NONE: data->dcb.Parity = NOPARITY; break; case SP_PARITY_ODD: data->dcb.Parity = ODDPARITY; break; case SP_PARITY_EVEN: data->dcb.Parity = EVENPARITY; break; case SP_PARITY_MARK: data->dcb.Parity = MARKPARITY; break; case SP_PARITY_SPACE: data->dcb.Parity = SPACEPARITY; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid parity setting"); } } if (config->stopbits >= 0) { switch (config->stopbits) { /* Note: There's also ONE5STOPBITS == 1.5 (unneeded so far). */ case 1: data->dcb.StopBits = ONESTOPBIT; break; case 2: data->dcb.StopBits = TWOSTOPBITS; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid stop bit setting"); } } if (config->rts >= 0) { switch (config->rts) { case SP_RTS_OFF: data->dcb.fRtsControl = RTS_CONTROL_DISABLE; break; case SP_RTS_ON: data->dcb.fRtsControl = RTS_CONTROL_ENABLE; break; case SP_RTS_FLOW_CONTROL: data->dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid RTS setting"); } } if (config->cts >= 0) { switch (config->cts) { case SP_CTS_IGNORE: data->dcb.fOutxCtsFlow = FALSE; break; case SP_CTS_FLOW_CONTROL: data->dcb.fOutxCtsFlow = TRUE; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid CTS setting"); } } if (config->dtr >= 0) { switch (config->dtr) { case SP_DTR_OFF: data->dcb.fDtrControl = DTR_CONTROL_DISABLE; break; case SP_DTR_ON: data->dcb.fDtrControl = DTR_CONTROL_ENABLE; break; case SP_DTR_FLOW_CONTROL: data->dcb.fDtrControl = DTR_CONTROL_HANDSHAKE; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid DTR setting"); } } if (config->dsr >= 0) { switch (config->dsr) { case SP_DSR_IGNORE: data->dcb.fOutxDsrFlow = FALSE; break; case SP_DSR_FLOW_CONTROL: data->dcb.fOutxDsrFlow = TRUE; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid DSR setting"); } } if (config->xon_xoff >= 0) { switch (config->xon_xoff) { case SP_XONXOFF_DISABLED: data->dcb.fInX = FALSE; data->dcb.fOutX = FALSE; break; case SP_XONXOFF_IN: data->dcb.fInX = TRUE; data->dcb.fOutX = FALSE; break; case SP_XONXOFF_OUT: data->dcb.fInX = FALSE; data->dcb.fOutX = TRUE; break; case SP_XONXOFF_INOUT: data->dcb.fInX = TRUE; data->dcb.fOutX = TRUE; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid XON/XOFF setting"); } } if (!SetCommState(port->hdl, &data->dcb)) RETURN_FAIL("SetCommState() failed"); #else /* !_WIN32 */ int controlbits; if (config->baudrate >= 0) { for (i = 0; i < NUM_STD_BAUDRATES; i++) { if (config->baudrate == std_baudrates[i].value) { if (cfsetospeed(&data->term, std_baudrates[i].index) < 0) RETURN_FAIL("cfsetospeed() failed"); if (cfsetispeed(&data->term, std_baudrates[i].index) < 0) RETURN_FAIL("cfsetispeed() failed"); break; } } /* Non-standard baud rate */ if (i == NUM_STD_BAUDRATES) { #ifdef __APPLE__ /* Set "dummy" baud rate. */ if (cfsetspeed(&data->term, B9600) < 0) RETURN_FAIL("cfsetspeed() failed"); baud_nonstd = config->baudrate; #elif defined(USE_TERMIOS_SPEED) baud_nonstd = 1; #else RETURN_ERROR(SP_ERR_SUPP, "Non-standard baudrate not supported"); #endif } } if (config->bits >= 0) { data->term.c_cflag &= ~CSIZE; switch (config->bits) { case 8: data->term.c_cflag |= CS8; break; case 7: data->term.c_cflag |= CS7; break; case 6: data->term.c_cflag |= CS6; break; case 5: data->term.c_cflag |= CS5; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid data bits setting"); } } if (config->parity >= 0) { data->term.c_iflag &= ~IGNPAR; data->term.c_cflag &= ~(PARENB | PARODD); #ifdef CMSPAR data->term.c_cflag &= ~CMSPAR; #endif switch (config->parity) { case SP_PARITY_NONE: data->term.c_iflag |= IGNPAR; break; case SP_PARITY_EVEN: data->term.c_cflag |= PARENB; break; case SP_PARITY_ODD: data->term.c_cflag |= PARENB | PARODD; break; #ifdef CMSPAR case SP_PARITY_MARK: data->term.c_cflag |= PARENB | PARODD; data->term.c_cflag |= CMSPAR; break; case SP_PARITY_SPACE: data->term.c_cflag |= PARENB; data->term.c_cflag |= CMSPAR; break; #else case SP_PARITY_MARK: case SP_PARITY_SPACE: RETURN_ERROR(SP_ERR_SUPP, "Mark/space parity not supported"); #endif default: RETURN_ERROR(SP_ERR_ARG, "Invalid parity setting"); } } if (config->stopbits >= 0) { data->term.c_cflag &= ~CSTOPB; switch (config->stopbits) { case 1: data->term.c_cflag &= ~CSTOPB; break; case 2: data->term.c_cflag |= CSTOPB; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid stop bits setting"); } } if (config->rts >= 0 || config->cts >= 0) { if (data->termiox_supported) { data->rts_flow = data->cts_flow = 0; switch (config->rts) { case SP_RTS_OFF: case SP_RTS_ON: controlbits = TIOCM_RTS; if (ioctl(port->fd, config->rts == SP_RTS_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) RETURN_FAIL("Setting RTS signal level failed"); break; case SP_RTS_FLOW_CONTROL: data->rts_flow = 1; break; default: break; } if (config->cts == SP_CTS_FLOW_CONTROL) data->cts_flow = 1; if (data->rts_flow && data->cts_flow) data->term.c_iflag |= CRTSCTS; else data->term.c_iflag &= ~CRTSCTS; } else { /* Asymmetric use of RTS/CTS not supported. */ if (data->term.c_iflag & CRTSCTS) { /* Flow control can only be disabled for both RTS & CTS together. */ if (config->rts >= 0 && config->rts != SP_RTS_FLOW_CONTROL) { if (config->cts != SP_CTS_IGNORE) RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be disabled together"); } if (config->cts >= 0 && config->cts != SP_CTS_FLOW_CONTROL) { if (config->rts <= 0 || config->rts == SP_RTS_FLOW_CONTROL) RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be disabled together"); } } else { /* Flow control can only be enabled for both RTS & CTS together. */ if (((config->rts == SP_RTS_FLOW_CONTROL) && (config->cts != SP_CTS_FLOW_CONTROL)) || ((config->cts == SP_CTS_FLOW_CONTROL) && (config->rts != SP_RTS_FLOW_CONTROL))) RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be enabled together"); } if (config->rts >= 0) { if (config->rts == SP_RTS_FLOW_CONTROL) { data->term.c_iflag |= CRTSCTS; } else { controlbits = TIOCM_RTS; if (ioctl(port->fd, config->rts == SP_RTS_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) RETURN_FAIL("Setting RTS signal level failed"); } } } } if (config->dtr >= 0 || config->dsr >= 0) { if (data->termiox_supported) { data->dtr_flow = data->dsr_flow = 0; switch (config->dtr) { case SP_DTR_OFF: case SP_DTR_ON: controlbits = TIOCM_DTR; if (ioctl(port->fd, config->dtr == SP_DTR_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) RETURN_FAIL("Setting DTR signal level failed"); break; case SP_DTR_FLOW_CONTROL: data->dtr_flow = 1; break; default: break; } if (config->dsr == SP_DSR_FLOW_CONTROL) data->dsr_flow = 1; } else { /* DTR/DSR flow control not supported. */ if (config->dtr == SP_DTR_FLOW_CONTROL || config->dsr == SP_DSR_FLOW_CONTROL) RETURN_ERROR(SP_ERR_SUPP, "DTR/DSR flow control not supported"); if (config->dtr >= 0) { controlbits = TIOCM_DTR; if (ioctl(port->fd, config->dtr == SP_DTR_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0) RETURN_FAIL("Setting DTR signal level failed"); } } } if (config->xon_xoff >= 0) { data->term.c_iflag &= ~(IXON | IXOFF | IXANY); switch (config->xon_xoff) { case SP_XONXOFF_DISABLED: break; case SP_XONXOFF_IN: data->term.c_iflag |= IXOFF; break; case SP_XONXOFF_OUT: data->term.c_iflag |= IXON | IXANY; break; case SP_XONXOFF_INOUT: data->term.c_iflag |= IXON | IXOFF | IXANY; break; default: RETURN_ERROR(SP_ERR_ARG, "Invalid XON/XOFF setting"); } } if (tcsetattr(port->fd, TCSANOW, &data->term) < 0) RETURN_FAIL("tcsetattr() failed"); #ifdef __APPLE__ if (baud_nonstd != B0) { if (ioctl(port->fd, IOSSIOSPEED, &baud_nonstd) == -1) RETURN_FAIL("IOSSIOSPEED ioctl failed"); /* * Set baud rates in data->term to correct, but incompatible * with tcsetattr() value, same as delivered by tcgetattr(). */ if (cfsetspeed(&data->term, baud_nonstd) < 0) RETURN_FAIL("cfsetspeed() failed"); } #elif defined(__linux__) #ifdef USE_TERMIOS_SPEED if (baud_nonstd) TRY(set_baudrate(port->fd, config->baudrate)); #endif #ifdef USE_TERMIOX if (data->termiox_supported) TRY(set_flow(port->fd, data)); #endif #endif #endif /* !_WIN32 */ RETURN_OK(); } SP_API enum sp_return sp_new_config(struct sp_port_config **config_ptr) { struct sp_port_config *config; TRACE("%p", config_ptr); if (!config_ptr) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); *config_ptr = NULL; if (!(config = malloc(sizeof(struct sp_port_config)))) RETURN_ERROR(SP_ERR_MEM, "Config malloc failed"); config->baudrate = -1; config->bits = -1; config->parity = -1; config->stopbits = -1; config->rts = -1; config->cts = -1; config->dtr = -1; config->dsr = -1; *config_ptr = config; RETURN_OK(); } SP_API void sp_free_config(struct sp_port_config *config) { TRACE("%p", config); if (!config) DEBUG("Null config"); else free(config); RETURN(); } SP_API enum sp_return sp_get_config(struct sp_port *port, struct sp_port_config *config) { struct port_data data; TRACE("%p, %p", port, config); CHECK_OPEN_PORT(); if (!config) RETURN_ERROR(SP_ERR_ARG, "Null config"); TRY(get_config(port, &data, config)); RETURN_OK(); } SP_API enum sp_return sp_set_config(struct sp_port *port, const struct sp_port_config *config) { struct port_data data; struct sp_port_config prev_config; TRACE("%p, %p", port, config); CHECK_OPEN_PORT(); if (!config) RETURN_ERROR(SP_ERR_ARG, "Null config"); TRY(get_config(port, &data, &prev_config)); TRY(set_config(port, &data, config)); RETURN_OK(); } #define CREATE_ACCESSORS(x, type) \ SP_API enum sp_return sp_set_##x(struct sp_port *port, type x) { \ struct port_data data; \ struct sp_port_config config; \ TRACE("%p, %d", port, x); \ CHECK_OPEN_PORT(); \ TRY(get_config(port, &data, &config)); \ config.x = x; \ TRY(set_config(port, &data, &config)); \ RETURN_OK(); \ } \ SP_API enum sp_return sp_get_config_##x(const struct sp_port_config *config, \ type *x) { \ TRACE("%p, %p", config, x); \ if (!x) \ RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); \ if (!config) \ RETURN_ERROR(SP_ERR_ARG, "Null config"); \ *x = config->x; \ RETURN_OK(); \ } \ SP_API enum sp_return sp_set_config_##x(struct sp_port_config *config, \ type x) { \ TRACE("%p, %d", config, x); \ if (!config) \ RETURN_ERROR(SP_ERR_ARG, "Null config"); \ config->x = x; \ RETURN_OK(); \ } CREATE_ACCESSORS(baudrate, int) CREATE_ACCESSORS(bits, int) CREATE_ACCESSORS(parity, enum sp_parity) CREATE_ACCESSORS(stopbits, int) CREATE_ACCESSORS(rts, enum sp_rts) CREATE_ACCESSORS(cts, enum sp_cts) CREATE_ACCESSORS(dtr, enum sp_dtr) CREATE_ACCESSORS(dsr, enum sp_dsr) CREATE_ACCESSORS(xon_xoff, enum sp_xonxoff) SP_API enum sp_return sp_set_config_flowcontrol(struct sp_port_config *config, enum sp_flowcontrol flowcontrol) { if (!config) RETURN_ERROR(SP_ERR_ARG, "Null configuration"); if (flowcontrol > SP_FLOWCONTROL_DTRDSR) RETURN_ERROR(SP_ERR_ARG, "Invalid flow control setting"); if (flowcontrol == SP_FLOWCONTROL_XONXOFF) config->xon_xoff = SP_XONXOFF_INOUT; else config->xon_xoff = SP_XONXOFF_DISABLED; if (flowcontrol == SP_FLOWCONTROL_RTSCTS) { config->rts = SP_RTS_FLOW_CONTROL; config->cts = SP_CTS_FLOW_CONTROL; } else { if (config->rts == SP_RTS_FLOW_CONTROL) config->rts = SP_RTS_ON; config->cts = SP_CTS_IGNORE; } if (flowcontrol == SP_FLOWCONTROL_DTRDSR) { config->dtr = SP_DTR_FLOW_CONTROL; config->dsr = SP_DSR_FLOW_CONTROL; } else { if (config->dtr == SP_DTR_FLOW_CONTROL) config->dtr = SP_DTR_ON; config->dsr = SP_DSR_IGNORE; } RETURN_OK(); } SP_API enum sp_return sp_set_flowcontrol(struct sp_port *port, enum sp_flowcontrol flowcontrol) { struct port_data data; struct sp_port_config config; TRACE("%p, %d", port, flowcontrol); CHECK_OPEN_PORT(); TRY(get_config(port, &data, &config)); TRY(sp_set_config_flowcontrol(&config, flowcontrol)); TRY(set_config(port, &data, &config)); RETURN_OK(); } SP_API enum sp_return sp_get_signals(struct sp_port *port, enum sp_signal *signals) { TRACE("%p, %p", port, signals); CHECK_OPEN_PORT(); if (!signals) RETURN_ERROR(SP_ERR_ARG, "Null result pointer"); DEBUG_FMT("Getting control signals for port %s", port->name); *signals = 0; #ifdef _WIN32 DWORD bits; if (GetCommModemStatus(port->hdl, &bits) == 0) RETURN_FAIL("GetCommModemStatus() failed"); if (bits & MS_CTS_ON) *signals |= SP_SIG_CTS; if (bits & MS_DSR_ON) *signals |= SP_SIG_DSR; if (bits & MS_RLSD_ON) *signals |= SP_SIG_DCD; if (bits & MS_RING_ON) *signals |= SP_SIG_RI; #else int bits; if (ioctl(port->fd, TIOCMGET, &bits) < 0) RETURN_FAIL("TIOCMGET ioctl failed"); if (bits & TIOCM_CTS) *signals |= SP_SIG_CTS; if (bits & TIOCM_DSR) *signals |= SP_SIG_DSR; if (bits & TIOCM_CAR) *signals |= SP_SIG_DCD; if (bits & TIOCM_RNG) *signals |= SP_SIG_RI; #endif RETURN_OK(); } SP_API enum sp_return sp_start_break(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); #ifdef _WIN32 if (SetCommBreak(port->hdl) == 0) RETURN_FAIL("SetCommBreak() failed"); #else if (ioctl(port->fd, TIOCSBRK, 1) < 0) RETURN_FAIL("TIOCSBRK ioctl failed"); #endif RETURN_OK(); } SP_API enum sp_return sp_end_break(struct sp_port *port) { TRACE("%p", port); CHECK_OPEN_PORT(); #ifdef _WIN32 if (ClearCommBreak(port->hdl) == 0) RETURN_FAIL("ClearCommBreak() failed"); #else if (ioctl(port->fd, TIOCCBRK, 1) < 0) RETURN_FAIL("TIOCCBRK ioctl failed"); #endif RETURN_OK(); } SP_API int sp_last_error_code(void) { TRACE_VOID(); #ifdef _WIN32 RETURN_INT(GetLastError()); #else RETURN_INT(errno); #endif } SP_API char *sp_last_error_message(void) { TRACE_VOID(); #ifdef _WIN32 TCHAR *message; DWORD error = GetLastError(); DWORD length = FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &message, 0, NULL ); if (length >= 2 && message[length - 2] == '\r') message[length - 2] = '\0'; RETURN_STRING(message); #else RETURN_STRING(strerror(errno)); #endif } SP_API void sp_free_error_message(char *message) { TRACE("%s", message); #ifdef _WIN32 LocalFree(message); #else (void)message; #endif RETURN(); } SP_API void sp_set_debug_handler(void (*handler)(const char *format, ...)) { TRACE("%p", handler); sp_debug_handler = handler; RETURN(); } SP_API void sp_default_debug_handler(const char *format, ...) { va_list args; va_start(args, format); if (getenv("LIBSERIALPORT_DEBUG")) { fputs("sp: ", stderr); vfprintf(stderr, format, args); } va_end(args); } SP_API int sp_get_major_package_version(void) { return SP_PACKAGE_VERSION_MAJOR; } SP_API int sp_get_minor_package_version(void) { return SP_PACKAGE_VERSION_MINOR; } SP_API int sp_get_micro_package_version(void) { return SP_PACKAGE_VERSION_MICRO; } SP_API const char *sp_get_package_version_string(void) { return SP_PACKAGE_VERSION_STRING; } SP_API int sp_get_current_lib_version(void) { return SP_LIB_VERSION_CURRENT; } SP_API int sp_get_revision_lib_version(void) { return SP_LIB_VERSION_REVISION; } SP_API int sp_get_age_lib_version(void) { return SP_LIB_VERSION_AGE; } SP_API const char *sp_get_lib_version_string(void) { return SP_LIB_VERSION_STRING; } /** @} */