mirror of
https://github.com/lospec/pixel-editor.git
synced 2023-08-10 21:12:51 +03:00
7976675132
Also left some comments about where to put the leftover functions once we have a more detailed structure.
169 lines
5.4 KiB
JavaScript
169 lines
5.4 KiB
JavaScript
/***********MISCELLANEOUS UTILITY FUNCTIONS**************/
|
|
|
|
// REFACTOR: put in Canvas class / IIFE
|
|
/** Tells if a pixel is empty (has alpha = 0)
|
|
*
|
|
* @param {*} pixel
|
|
*/
|
|
function isPixelEmpty(pixel) {
|
|
if (pixel == null || pixel === undefined) {
|
|
return false;
|
|
}
|
|
|
|
// If the alpha channel is 0, the current pixel is empty
|
|
if (pixel[3] == 0) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// REFACTOR: move to eyedropper onMouseUp event?
|
|
/** Gets the eyedropped colour (the colour of the pixel pointed by the cursor when the user is using the eyedropper).
|
|
* It takes the colour of the canvas with the biggest z-index, basically the one the user can see, since it doesn't
|
|
* make much sense to sample a colour which is hidden behind a different layer
|
|
*
|
|
* @param {*} cursorLocation The position of the cursor
|
|
*/
|
|
function getEyedropperColor(cursorLocation) {
|
|
// Making sure max will take some kind of value
|
|
let max = -1;
|
|
// Using tmpColour to sample the sprite
|
|
let tmpColour;
|
|
// Returned colour
|
|
let selectedColor;
|
|
|
|
for (let i=1; i<layers.length; i++) {
|
|
// Getting the colour of the pixel in the cursorLocation
|
|
tmpColour = layers[i].context.getImageData(Math.floor(cursorLocation[0]/zoom),Math.floor(cursorLocation[1]/zoom),1,1).data;
|
|
|
|
// If it's not empty, I check if it's on the top of the previous colour
|
|
if (layers[i].canvas.style.zIndex > max || isPixelEmpty(selectedColor) || selectedColor === undefined) {
|
|
max = layers[i].canvas.style.zIndex;
|
|
|
|
if (!isPixelEmpty(tmpColour)) {
|
|
selectedColor = tmpColour;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the final colour was empty, I return black
|
|
if (isPixelEmpty(tmpColour) && selectedColor === undefined) {
|
|
selectedColor = [0, 0, 0];
|
|
}
|
|
|
|
return selectedColor;
|
|
}
|
|
|
|
// REFACTOR: private method of custom ImageData wrapper (PixelImageData?)?
|
|
/** Nearest neighbor algorithm to scale a sprite
|
|
*
|
|
* @param {*} src The source imageData
|
|
* @param {*} dst The destination imageData
|
|
*/
|
|
function nearestNeighbor (src, dst) {
|
|
let pos = 0
|
|
|
|
// Just applying the nearest neighbor algorithm
|
|
for (let y = 0; y < dst.height; y++) {
|
|
for (let x = 0; x < dst.width; x++) {
|
|
const srcX = Math.floor(x * src.width / dst.width)
|
|
const srcY = Math.floor(y * src.height / dst.height)
|
|
|
|
let srcPos = ((srcY * src.width) + srcX) * 4
|
|
|
|
dst.data[pos++] = src.data[srcPos++] // R
|
|
dst.data[pos++] = src.data[srcPos++] // G
|
|
dst.data[pos++] = src.data[srcPos++] // B
|
|
dst.data[pos++] = src.data[srcPos++] // A
|
|
}
|
|
}
|
|
}
|
|
|
|
// REFACTOR: private method of custom ImageData wrapper (PixelImageData?)?
|
|
/** Bilinear interpolation used to scale a sprite
|
|
*
|
|
* @param {*} src The source imageData
|
|
* @param {*} dst The destination imageData
|
|
*/
|
|
function bilinearInterpolation (src, dst) {
|
|
// Applying the bilinear interpolation algorithm
|
|
|
|
function interpolate (k, kMin, kMax, vMin, vMax) {
|
|
return Math.round((k - kMin) * vMax + (kMax - k) * vMin)
|
|
}
|
|
|
|
function interpolateHorizontal (offset, x, y, xMin, xMax) {
|
|
const vMin = src.data[((y * src.width + xMin) * 4) + offset]
|
|
if (xMin === xMax) return vMin
|
|
|
|
const vMax = src.data[((y * src.width + xMax) * 4) + offset]
|
|
return interpolate(x, xMin, xMax, vMin, vMax)
|
|
}
|
|
|
|
function interpolateVertical (offset, x, xMin, xMax, y, yMin, yMax) {
|
|
const vMin = interpolateHorizontal(offset, x, yMin, xMin, xMax)
|
|
if (yMin === yMax) return vMin
|
|
|
|
const vMax = interpolateHorizontal(offset, x, yMax, xMin, xMax)
|
|
return interpolate(y, yMin, yMax, vMin, vMax)
|
|
}
|
|
|
|
let pos = 0
|
|
|
|
for (let y = 0; y < dst.height; y++) {
|
|
for (let x = 0; x < dst.width; x++) {
|
|
const srcX = x * src.width / dst.width
|
|
const srcY = y * src.height / dst.height
|
|
|
|
const xMin = Math.floor(srcX)
|
|
const yMin = Math.floor(srcY)
|
|
|
|
const xMax = Math.min(Math.ceil(srcX), src.width - 1)
|
|
const yMax = Math.min(Math.ceil(srcY), src.height - 1)
|
|
|
|
dst.data[pos++] = interpolateVertical(0, srcX, xMin, xMax, srcY, yMin, yMax) // R
|
|
dst.data[pos++] = interpolateVertical(1, srcX, xMin, xMax, srcY, yMin, yMax) // G
|
|
dst.data[pos++] = interpolateVertical(2, srcX, xMin, xMax, srcY, yMin, yMax) // B
|
|
dst.data[pos++] = interpolateVertical(3, srcX, xMin, xMax, srcY, yMin, yMax) // A
|
|
}
|
|
}
|
|
}
|
|
|
|
// REFACTOR: public static method of custom ImageData wrapper (PixelImageData?)?
|
|
/** Resizes an imageData depending on the algorithm and on the new width and height
|
|
*
|
|
* @param {*} image The imageData to scale
|
|
* @param {*} width The new width of the imageData
|
|
* @param {*} height The new height of the imageData
|
|
* @param {*} algorithm Scaling algorithm chosen by the user in the dialogue
|
|
*/
|
|
function resizeImageData (image, width, height, algorithm) {
|
|
algorithm = algorithm || 'bilinear-interpolation'
|
|
|
|
let resize;
|
|
switch (algorithm) {
|
|
case 'nearest-neighbor': resize = nearestNeighbor; break
|
|
case 'bilinear-interpolation': resize = bilinearInterpolation; break
|
|
default: return image;
|
|
}
|
|
|
|
const result = new ImageData(width, height)
|
|
|
|
resize(image, result)
|
|
|
|
return result
|
|
}
|
|
|
|
// REFACTOR: public static method of custom ImageData wrapper (PixelImageData?)?
|
|
/** Gets the position in (x, y) format of the pixel with index "index"
|
|
*
|
|
* @param {*} index The index of the pixel of which we need the (x, y) position
|
|
*/
|
|
function getPixelPosition(index) {
|
|
let linearIndex = index / 4;
|
|
let x = linearIndex % layers[0].canvasSize[0];
|
|
let y = Math.floor(linearIndex / layers[0].canvasSize[0]);
|
|
|
|
return [Math.ceil(x), Math.ceil(y)];
|
|
} |