2021-01-19 16:18:38 +03:00
|
|
|
// Binary Search Tree example by @SleepyRoy
|
|
|
|
|
|
|
|
// TODO: make Node.value generic once it's robust enough
|
|
|
|
// TODO: `return match` instead of returns everywhere inside match
|
|
|
|
|
|
|
|
struct Empty {}
|
|
|
|
|
|
|
|
struct Node {
|
|
|
|
value f64
|
|
|
|
left Tree
|
|
|
|
right Tree
|
|
|
|
}
|
|
|
|
|
|
|
|
type Tree = Empty | Node
|
|
|
|
|
|
|
|
// return size(number of nodes) of BST
|
|
|
|
fn size(tree Tree) int {
|
|
|
|
return match tree {
|
|
|
|
// TODO: remove int() once match gets smarter
|
|
|
|
Empty { int(0) }
|
|
|
|
Node { 1 + size(tree.left) + size(tree.right) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// insert a value to BST
|
|
|
|
fn insert(tree Tree, x f64) Tree {
|
|
|
|
match tree {
|
|
|
|
Empty { return Node{x, tree, tree} }
|
|
|
|
Node {
|
|
|
|
return if x == tree.value {
|
|
|
|
tree
|
|
|
|
} else if x < tree.value {
|
|
|
|
Node{...tree, left: insert(tree.left, x)}
|
|
|
|
} else {
|
|
|
|
Node{...tree, right: insert(tree.right, x)}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// whether able to find a value in BST
|
|
|
|
fn search(tree Tree, x f64) bool {
|
|
|
|
match tree {
|
|
|
|
Empty { return false }
|
|
|
|
Node {
|
|
|
|
return if x == tree.value {
|
|
|
|
true
|
|
|
|
} else if x < tree.value {
|
|
|
|
search(tree.left, x)
|
|
|
|
} else {
|
|
|
|
search(tree.right, x)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the minimal value of a BST
|
|
|
|
fn min(tree Tree) f64 {
|
|
|
|
match tree {
|
|
|
|
Empty { return 1e100 }
|
|
|
|
Node { return if tree.value < min(tree.left) { tree.value } else { min(tree.left) } }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-24 12:15:11 +03:00
|
|
|
// delete a value in BST (if nonexistant do nothing)
|
2021-01-19 16:18:38 +03:00
|
|
|
fn delete(tree Tree, x f64) Tree {
|
|
|
|
match tree {
|
|
|
|
Empty { return tree }
|
|
|
|
Node {
|
|
|
|
if tree.left is Node && tree.right is Node {
|
|
|
|
return if x < tree.value {
|
|
|
|
Node{...tree, left: delete(tree.left, x)}
|
|
|
|
} else if x > tree.value {
|
|
|
|
Node{...tree, right: delete(tree.right, x)}
|
|
|
|
} else {
|
|
|
|
Node{...tree, value: min(tree.right), right: delete(tree.right, min(tree.right))}
|
|
|
|
}
|
|
|
|
} else if tree.left is Node {
|
|
|
|
return if x == tree.value { tree.left } else { Node{...tree, left: delete(tree.left, x)} }
|
|
|
|
} else {
|
|
|
|
if x == tree.value { return tree.right } else { return Node{...tree, right: delete(tree.right, x)} }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
mut tree := Tree(Empty{})
|
|
|
|
input := [0.3, 0.2, 0.5, 0.0, 0.6, 0.8, 0.9, 1.0, 0.1, 0.4, 0.7]
|
|
|
|
for i in input {
|
|
|
|
tree = insert(tree, i)
|
|
|
|
}
|
|
|
|
println('[1] after insertion tree size is ${size(tree)}') // 11
|
|
|
|
del := [-0.3, 0.0, 0.3, 0.6, 1.0, 1.5]
|
|
|
|
for i in del {
|
|
|
|
tree = delete(tree, i)
|
|
|
|
}
|
|
|
|
print('[2] after deletion tree size is ${size(tree)}, ') // 7
|
|
|
|
print('and these elements were deleted: ') // 0.0 0.3 0.6 1.0
|
|
|
|
for i in input {
|
|
|
|
if !search(tree, i) {
|
|
|
|
print('$i ')
|
|
|
|
}
|
|
|
|
}
|
|
|
|
println('')
|
|
|
|
}
|