2019-10-17 09:04:57 +03:00
|
|
|
|
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
|
|
|
|
// Use of this source code is governed by an MIT license
|
|
|
|
|
// that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
|
|
module math
|
|
|
|
|
|
|
|
|
|
const (
|
|
|
|
|
uvnan = 0x7FF8000000000001
|
|
|
|
|
uvinf = 0x7FF0000000000000
|
|
|
|
|
uvneginf = 0xFFF0000000000000
|
|
|
|
|
uvone = 0x3FF0000000000000
|
|
|
|
|
mask = 0x7FF
|
|
|
|
|
shift = 64 - 11 - 1
|
|
|
|
|
bias = 1023
|
2019-12-07 17:13:25 +03:00
|
|
|
|
sign_mask = (u64(1) << 63)
|
|
|
|
|
frac_mask = ((u64(1)<<u64(shift)) - u64(1))
|
2019-10-17 09:04:57 +03:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
// inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
|
|
|
|
|
pub fn inf(sign int) f64 {
|
|
|
|
|
v := if sign >= 0 { uvinf } else { uvneginf }
|
|
|
|
|
return f64_from_bits(v)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// nan returns an IEEE 754 ``not-a-number'' value.
|
|
|
|
|
pub fn nan() f64 { return f64_from_bits(uvnan) }
|
|
|
|
|
|
|
|
|
|
// is_nan reports whether f is an IEEE 754 ``not-a-number'' value.
|
|
|
|
|
pub fn is_nan(f f64) bool {
|
|
|
|
|
// IEEE 754 says that only NaNs satisfy f != f.
|
|
|
|
|
// To avoid the floating-point hardware, could use:
|
|
|
|
|
// x := f64_bits(f);
|
|
|
|
|
// return u32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
|
|
|
|
|
return f != f
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// is_inf reports whether f is an infinity, according to sign.
|
|
|
|
|
// If sign > 0, is_inf reports whether f is positive infinity.
|
|
|
|
|
// If sign < 0, is_inf reports whether f is negative infinity.
|
|
|
|
|
// If sign == 0, is_inf reports whether f is either infinity.
|
|
|
|
|
pub fn is_inf(f f64, sign int) bool {
|
|
|
|
|
// Test for infinity by comparing against maximum float.
|
|
|
|
|
// To avoid the floating-point hardware, could use:
|
|
|
|
|
// x := f64_bits(f);
|
|
|
|
|
// return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf;
|
|
|
|
|
return (sign >= 0 && f > max_f64) || (sign <= 0 && f < -max_f64)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NOTE: (joe-c) exponent notation is borked
|
|
|
|
|
// normalize returns a normal number y and exponent exp
|
|
|
|
|
// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
|
|
|
|
|
// pub fn normalize(x f64) (f64, int) {
|
|
|
|
|
// smallest_normal := 2.2250738585072014e-308 // 2**-1022
|
|
|
|
|
// if abs(x) < smallest_normal {
|
|
|
|
|
// return x * (1 << 52), -52
|
|
|
|
|
// }
|
|
|
|
|
// return x, 0
|
|
|
|
|
// }
|