2022-06-02 07:11:29 +03:00
|
|
|
// Author: CCS
|
2022-04-22 12:01:29 +03:00
|
|
|
// I follow literally code in C, done many years ago
|
|
|
|
fn main() {
|
|
|
|
// Adjacency matrix as a map
|
|
|
|
graph := {
|
|
|
|
'A': ['B', 'C']
|
|
|
|
'B': ['A', 'D', 'E']
|
|
|
|
'C': ['A', 'F']
|
|
|
|
'D': ['B']
|
|
|
|
'E': ['B', 'F']
|
|
|
|
'F': ['C', 'E']
|
|
|
|
}
|
2022-11-15 16:53:13 +03:00
|
|
|
println('Graph: ${graph}')
|
2022-04-22 12:01:29 +03:00
|
|
|
path := breadth_first_search_path(graph, 'A', 'F')
|
2022-11-15 16:53:13 +03:00
|
|
|
println('\n The shortest path from node A to node F is: ${path.reverse()}')
|
2022-04-22 12:01:29 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
// Breadth-First Search (BFS) allows you to find the shortest distance between two nodes in the graph.
|
|
|
|
fn breadth_first_search_path(graph map[string][]string, start string, target string) []string {
|
|
|
|
mut path := []string{} // ONE PATH with SUCCESS = array
|
|
|
|
mut queue := []string{} // a queue ... many paths
|
|
|
|
// all_nodes := graph.keys() // get a key of this map
|
|
|
|
// a map to store all the nodes visited to avoid cycles
|
|
|
|
// start all them with False, not visited yet
|
2022-06-02 07:11:29 +03:00
|
|
|
mut visited := visited_init(graph) // a map fully
|
2022-04-22 12:01:29 +03:00
|
|
|
// false ==> not visited yet: {'A': false, 'B': false, 'C': false, 'D': false, 'E': false}
|
|
|
|
queue << start // first arrival
|
|
|
|
for queue.len != 0 {
|
|
|
|
mut node := departure(mut queue) // get the front node and remove it
|
|
|
|
if visited[node] == false { // check if this node is already visited
|
|
|
|
// if no ... test it searchinf for a final node
|
|
|
|
visited[node] = true // means: visit this node
|
|
|
|
if node == target {
|
|
|
|
path = build_path_reverse(graph, start, node, visited)
|
|
|
|
return path
|
|
|
|
}
|
|
|
|
// Expansion of node removed from queue
|
2022-11-15 16:53:13 +03:00
|
|
|
print('\n Expansion of node ${node} (true/false): ${graph[node]}')
|
2022-04-22 12:01:29 +03:00
|
|
|
// take all nodes from the node
|
|
|
|
for vertex in graph[node] { // println("\n ...${vertex}")
|
|
|
|
// not explored yet
|
|
|
|
if visited[vertex] == false {
|
|
|
|
queue << vertex
|
|
|
|
}
|
|
|
|
}
|
2022-11-15 16:53:13 +03:00
|
|
|
print('\n QUEUE: ${queue} (only not visited) \n Visited: ${visited}')
|
2022-04-22 12:01:29 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
path = ['Path not found, problem in the Graph, start or end nodes! ']
|
|
|
|
return path
|
|
|
|
}
|
|
|
|
|
|
|
|
// classical removing of a node from the start of a queue
|
|
|
|
fn departure(mut queue []string) string {
|
|
|
|
mut x := queue[0]
|
|
|
|
queue.delete(0)
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
|
2022-06-02 07:11:29 +03:00
|
|
|
// Creating aa map to initialize with of visited nodes .... all with false in the init
|
|
|
|
// so these nodes are NOT VISITED YET
|
|
|
|
fn visited_init(a_graph map[string][]string) map[string]bool {
|
|
|
|
mut temp := map[string]bool{} // attention in these initializations with maps
|
2023-01-25 22:58:44 +03:00
|
|
|
for i, _ in a_graph {
|
2022-06-02 07:11:29 +03:00
|
|
|
temp[i] = false
|
|
|
|
}
|
|
|
|
return temp
|
|
|
|
}
|
|
|
|
|
2022-04-22 12:01:29 +03:00
|
|
|
// Based in the current node that is final, search for its parent, already visited, up to the root or start node
|
|
|
|
fn build_path_reverse(graph map[string][]string, start string, final string, visited map[string]bool) []string {
|
2022-11-15 16:53:13 +03:00
|
|
|
print('\n\n Nodes visited (true) or no (false): ${visited}')
|
2022-04-22 12:01:29 +03:00
|
|
|
array_of_nodes := graph.keys()
|
|
|
|
mut current := final
|
|
|
|
mut path := []string{}
|
|
|
|
path << current
|
|
|
|
|
|
|
|
for (current != start) {
|
|
|
|
for i in array_of_nodes {
|
|
|
|
if (current in graph[i]) && (visited[i] == true) {
|
|
|
|
current = i
|
|
|
|
break // the first ocurrence is enough
|
|
|
|
}
|
|
|
|
}
|
|
|
|
path << current // update the path tracked
|
|
|
|
}
|
|
|
|
return path
|
|
|
|
}
|
2022-06-02 07:11:29 +03:00
|
|
|
|
|
|
|
//======================================================
|