2021-08-23 00:35:28 +03:00
|
|
|
module math
|
|
|
|
|
|
|
|
// floor returns the greatest integer value less than or equal to x.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// floor(±0) = ±0
|
|
|
|
// floor(±inf) = ±inf
|
|
|
|
// floor(nan) = nan
|
|
|
|
pub fn floor(x f64) f64 {
|
|
|
|
if x == 0 || is_nan(x) || is_inf(x, 0) {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
if x < 0 {
|
|
|
|
mut d, fract := modf(-x)
|
|
|
|
if fract != 0.0 {
|
|
|
|
d = d + 1
|
|
|
|
}
|
|
|
|
return -d
|
|
|
|
}
|
|
|
|
d, _ := modf(x)
|
|
|
|
return d
|
|
|
|
}
|
|
|
|
|
|
|
|
// ceil returns the least integer value greater than or equal to x.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// ceil(±0) = ±0
|
|
|
|
// ceil(±inf) = ±inf
|
|
|
|
// ceil(nan) = nan
|
|
|
|
pub fn ceil(x f64) f64 {
|
|
|
|
return -floor(-x)
|
|
|
|
}
|
|
|
|
|
|
|
|
// trunc returns the integer value of x.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// trunc(±0) = ±0
|
|
|
|
// trunc(±inf) = ±inf
|
|
|
|
// trunc(nan) = nan
|
|
|
|
pub fn trunc(x f64) f64 {
|
|
|
|
if x == 0 || is_nan(x) || is_inf(x, 0) {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
d, _ := modf(x)
|
|
|
|
return d
|
|
|
|
}
|
|
|
|
|
|
|
|
// round returns the nearest integer, rounding half away from zero.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// round(±0) = ±0
|
|
|
|
// round(±inf) = ±inf
|
|
|
|
// round(nan) = nan
|
|
|
|
pub fn round(x f64) f64 {
|
|
|
|
if x == 0 || is_nan(x) || is_inf(x, 0) {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
// Largest integer <= x
|
|
|
|
mut y := floor(x) // Fractional part
|
|
|
|
mut r := x - y // Round up to nearest.
|
|
|
|
if r > 0.5 {
|
|
|
|
unsafe {
|
|
|
|
goto rndup
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Round to even
|
|
|
|
if r == 0.5 {
|
|
|
|
r = y - 2.0 * floor(0.5 * y)
|
|
|
|
if r == 1.0 {
|
|
|
|
rndup:
|
|
|
|
y += 1.0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Else round down.
|
|
|
|
return y
|
|
|
|
}
|
|
|
|
|
2022-07-09 10:41:58 +03:00
|
|
|
// Returns the rounded float, with sig_digits of precision.
|
|
|
|
// i.e `assert round_sig(4.3239437319748394,6) == 4.323944`
|
|
|
|
pub fn round_sig(x f64, sig_digits int) f64 {
|
|
|
|
mut ret_str := '$x'
|
|
|
|
|
|
|
|
match sig_digits {
|
|
|
|
0 { ret_str = '${x:0.0f}' }
|
|
|
|
1 { ret_str = '${x:0.1f}' }
|
|
|
|
2 { ret_str = '${x:0.2f}' }
|
|
|
|
3 { ret_str = '${x:0.3f}' }
|
|
|
|
4 { ret_str = '${x:0.4f}' }
|
|
|
|
5 { ret_str = '${x:0.5f}' }
|
|
|
|
6 { ret_str = '${x:0.6f}' }
|
|
|
|
7 { ret_str = '${x:0.7f}' }
|
|
|
|
8 { ret_str = '${x:0.8f}' }
|
|
|
|
9 { ret_str = '${x:0.9f}' }
|
|
|
|
10 { ret_str = '${x:0.10f}' }
|
|
|
|
11 { ret_str = '${x:0.11f}' }
|
|
|
|
12 { ret_str = '${x:0.12f}' }
|
|
|
|
13 { ret_str = '${x:0.13f}' }
|
|
|
|
14 { ret_str = '${x:0.14f}' }
|
|
|
|
15 { ret_str = '${x:0.15f}' }
|
|
|
|
16 { ret_str = '${x:0.16f}' }
|
|
|
|
else { ret_str = '$x' }
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret_str.f64()
|
|
|
|
}
|
|
|
|
|
2021-08-23 00:35:28 +03:00
|
|
|
// round_to_even returns the nearest integer, rounding ties to even.
|
|
|
|
//
|
|
|
|
// special cases are:
|
|
|
|
// round_to_even(±0) = ±0
|
|
|
|
// round_to_even(±inf) = ±inf
|
|
|
|
// round_to_even(nan) = nan
|
|
|
|
pub fn round_to_even(x f64) f64 {
|
|
|
|
mut bits := f64_bits(x)
|
|
|
|
mut e_ := (bits >> shift) & mask
|
|
|
|
if e_ >= bias {
|
|
|
|
// round abs(x) >= 1.
|
|
|
|
// - Large numbers without fractional components, infinity, and nan are unchanged.
|
|
|
|
// - Add 0.499.. or 0.5 before truncating depending on whether the truncated
|
|
|
|
// number is even or odd (respectively).
|
|
|
|
half_minus_ulp := u64(u64(1) << (shift - 1)) - 1
|
|
|
|
e_ -= u64(bias)
|
|
|
|
bits += (half_minus_ulp + (bits >> (shift - e_)) & 1) >> e_
|
|
|
|
bits &= frac_mask >> e_
|
|
|
|
bits ^= frac_mask >> e_
|
|
|
|
} else if e_ == bias - 1 && bits & frac_mask != 0 {
|
|
|
|
// round 0.5 < abs(x) < 1.
|
|
|
|
bits = bits & sign_mask | uvone // +-1
|
|
|
|
} else {
|
|
|
|
// round abs(x) <= 0.5 including denormals.
|
|
|
|
bits &= sign_mask // +-0
|
|
|
|
}
|
|
|
|
return f64_from_bits(bits)
|
|
|
|
}
|