1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/math/floor.v

135 lines
3.0 KiB
V
Raw Normal View History

module math
// floor returns the greatest integer value less than or equal to x.
//
// special cases are:
// floor(±0) = ±0
// floor(±inf) = ±inf
// floor(nan) = nan
pub fn floor(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
if x < 0 {
mut d, fract := modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := modf(x)
return d
}
// ceil returns the least integer value greater than or equal to x.
//
// special cases are:
// ceil(±0) = ±0
// ceil(±inf) = ±inf
// ceil(nan) = nan
pub fn ceil(x f64) f64 {
return -floor(-x)
}
// trunc returns the integer value of x.
//
// special cases are:
// trunc(±0) = ±0
// trunc(±inf) = ±inf
// trunc(nan) = nan
pub fn trunc(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
d, _ := modf(x)
return d
}
// round returns the nearest integer, rounding half away from zero.
//
// special cases are:
// round(±0) = ±0
// round(±inf) = ±inf
// round(nan) = nan
pub fn round(x f64) f64 {
if x == 0 || is_nan(x) || is_inf(x, 0) {
return x
}
// Largest integer <= x
mut y := floor(x) // Fractional part
mut r := x - y // Round up to nearest.
if r > 0.5 {
unsafe {
goto rndup
}
}
// Round to even
if r == 0.5 {
r = y - 2.0 * floor(0.5 * y)
if r == 1.0 {
rndup:
y += 1.0
}
}
// Else round down.
return y
}
// Returns the rounded float, with sig_digits of precision.
// i.e `assert round_sig(4.3239437319748394,6) == 4.323944`
pub fn round_sig(x f64, sig_digits int) f64 {
mut ret_str := '$x'
match sig_digits {
0 { ret_str = '${x:0.0f}' }
1 { ret_str = '${x:0.1f}' }
2 { ret_str = '${x:0.2f}' }
3 { ret_str = '${x:0.3f}' }
4 { ret_str = '${x:0.4f}' }
5 { ret_str = '${x:0.5f}' }
6 { ret_str = '${x:0.6f}' }
7 { ret_str = '${x:0.7f}' }
8 { ret_str = '${x:0.8f}' }
9 { ret_str = '${x:0.9f}' }
10 { ret_str = '${x:0.10f}' }
11 { ret_str = '${x:0.11f}' }
12 { ret_str = '${x:0.12f}' }
13 { ret_str = '${x:0.13f}' }
14 { ret_str = '${x:0.14f}' }
15 { ret_str = '${x:0.15f}' }
16 { ret_str = '${x:0.16f}' }
else { ret_str = '$x' }
}
return ret_str.f64()
}
// round_to_even returns the nearest integer, rounding ties to even.
//
// special cases are:
// round_to_even(±0) = ±0
// round_to_even(±inf) = ±inf
// round_to_even(nan) = nan
pub fn round_to_even(x f64) f64 {
mut bits := f64_bits(x)
mut e_ := (bits >> shift) & mask
if e_ >= bias {
// round abs(x) >= 1.
// - Large numbers without fractional components, infinity, and nan are unchanged.
// - Add 0.499.. or 0.5 before truncating depending on whether the truncated
// number is even or odd (respectively).
half_minus_ulp := u64(u64(1) << (shift - 1)) - 1
e_ -= u64(bias)
bits += (half_minus_ulp + (bits >> (shift - e_)) & 1) >> e_
bits &= frac_mask >> e_
bits ^= frac_mask >> e_
} else if e_ == bias - 1 && bits & frac_mask != 0 {
// round 0.5 < abs(x) < 1.
bits = bits & sign_mask | uvone // +-1
} else {
// round abs(x) <= 0.5 including denormals.
bits &= sign_mask // +-0
}
return f64_from_bits(bits)
}