1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/thirdparty/walloc/walloc.c

541 lines
17 KiB
C
Raw Normal View History

// walloc.c: a small malloc implementation for use in WebAssembly targets
// Copyright (c) 2020 Igalia, S.L.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
typedef __SIZE_TYPE__ size_t;
typedef __UINTPTR_TYPE__ uintptr_t;
typedef __UINT8_TYPE__ uint8_t;
#define NULL ((void *)0)
#define STATIC_ASSERT_EQ(a, b) _Static_assert((a) == (b), "eq")
#ifndef NDEBUG
#define ASSERT(x) \
do \
{ \
if (!(x)) \
__builtin_trap(); \
} while (0)
#else
#define ASSERT(x) \
do \
{ \
} while (0)
#endif
#define ASSERT_EQ(a, b) ASSERT((a) == (b))
static inline size_t max(size_t a, size_t b)
{
return a < b ? b : a;
}
static inline uintptr_t align(uintptr_t val, uintptr_t alignment)
{
return (val + alignment - 1) & ~(alignment - 1);
}
#define ASSERT_ALIGNED(x, y) ASSERT((x) == align((x), y))
#define CHUNK_SIZE 256
#define CHUNK_SIZE_LOG_2 8
#define CHUNK_MASK (CHUNK_SIZE - 1)
STATIC_ASSERT_EQ(CHUNK_SIZE, 1 << CHUNK_SIZE_LOG_2);
#define PAGE_SIZE 65536
#define PAGE_SIZE_LOG_2 16
#define PAGE_MASK (PAGE_SIZE - 1)
STATIC_ASSERT_EQ(PAGE_SIZE, 1 << PAGE_SIZE_LOG_2);
#define CHUNKS_PER_PAGE 256
STATIC_ASSERT_EQ(PAGE_SIZE, CHUNK_SIZE *CHUNKS_PER_PAGE);
#define GRANULE_SIZE 8
#define GRANULE_SIZE_LOG_2 3
#define LARGE_OBJECT_THRESHOLD 256
#define LARGE_OBJECT_GRANULE_THRESHOLD 32
STATIC_ASSERT_EQ(GRANULE_SIZE, 1 << GRANULE_SIZE_LOG_2);
STATIC_ASSERT_EQ(LARGE_OBJECT_THRESHOLD,
LARGE_OBJECT_GRANULE_THRESHOLD *GRANULE_SIZE);
struct chunk
{
char data[CHUNK_SIZE];
};
// There are small object pages for allocations of these sizes.
#define FOR_EACH_SMALL_OBJECT_GRANULES(M) \
M(1) \
M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
enum chunk_kind
{
#define DEFINE_SMALL_OBJECT_CHUNK_KIND(i) GRANULES_##i,
FOR_EACH_SMALL_OBJECT_GRANULES(DEFINE_SMALL_OBJECT_CHUNK_KIND)
#undef DEFINE_SMALL_OBJECT_CHUNK_KIND
SMALL_OBJECT_CHUNK_KINDS,
FREE_LARGE_OBJECT = 254,
LARGE_OBJECT = 255
};
static const uint8_t small_object_granule_sizes[] =
{
#define SMALL_OBJECT_GRANULE_SIZE(i) i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
};
static enum chunk_kind granules_to_chunk_kind(unsigned granules)
{
#define TEST_GRANULE_SIZE(i) \
if (granules <= i) \
return GRANULES_##i;
FOR_EACH_SMALL_OBJECT_GRANULES(TEST_GRANULE_SIZE);
#undef TEST_GRANULE_SIZE
return LARGE_OBJECT;
}
static unsigned chunk_kind_to_granules(enum chunk_kind kind)
{
switch (kind)
{
#define CHUNK_KIND_GRANULE_SIZE(i) \
case GRANULES_##i: \
return i;
FOR_EACH_SMALL_OBJECT_GRANULES(CHUNK_KIND_GRANULE_SIZE);
#undef CHUNK_KIND_GRANULE_SIZE
default:
return -1;
}
}
// Given a pointer P returned by malloc(), we get a header pointer via
// P&~PAGE_MASK, and a chunk index via (P&PAGE_MASK)/CHUNKS_PER_PAGE. If
// chunk_kinds[chunk_idx] is [FREE_]LARGE_OBJECT, then the pointer is a large
// object, otherwise the kind indicates the size in granules of the objects in
// the chunk.
struct page_header
{
uint8_t chunk_kinds[CHUNKS_PER_PAGE];
};
struct page
{
union
{
struct page_header header;
struct chunk chunks[CHUNKS_PER_PAGE];
};
};
#define PAGE_HEADER_SIZE (sizeof(struct page_header))
#define FIRST_ALLOCATABLE_CHUNK 1
STATIC_ASSERT_EQ(PAGE_HEADER_SIZE, FIRST_ALLOCATABLE_CHUNK *CHUNK_SIZE);
static struct page *get_page(void *ptr)
{
return (struct page *)(char *)(((uintptr_t)ptr) & ~PAGE_MASK);
}
static unsigned get_chunk_index(void *ptr)
{
return (((uintptr_t)ptr) & PAGE_MASK) / CHUNK_SIZE;
}
struct freelist
{
struct freelist *next;
};
struct large_object
{
struct large_object *next;
size_t size;
};
#define LARGE_OBJECT_HEADER_SIZE (sizeof(struct large_object))
static inline void *get_large_object_payload(struct large_object *obj)
{
return ((char *)obj) + LARGE_OBJECT_HEADER_SIZE;
}
static inline struct large_object *get_large_object(void *ptr)
{
return (struct large_object *)(((char *)ptr) - LARGE_OBJECT_HEADER_SIZE);
}
static struct freelist *small_object_freelists[SMALL_OBJECT_CHUNK_KINDS];
static struct large_object *large_objects;
extern void __heap_base;
static size_t walloc_heap_size;
static struct page *
allocate_pages(size_t payload_size, size_t *n_allocated)
{
size_t needed = payload_size + PAGE_HEADER_SIZE;
size_t heap_size = __builtin_wasm_memory_size(0) * PAGE_SIZE;
uintptr_t base = heap_size;
uintptr_t preallocated = 0, grow = 0;
if (!walloc_heap_size)
{
// We are allocating the initial pages, if any. We skip the first 64 kB,
// then take any additional space up to the memory size.
uintptr_t heap_base = align((uintptr_t)&__heap_base, PAGE_SIZE);
preallocated = heap_size - heap_base; // Preallocated pages.
walloc_heap_size = preallocated;
base -= preallocated;
}
if (preallocated < needed)
{
// Always grow the walloc heap at least by 50%.
grow = align(max(walloc_heap_size / 2, needed - preallocated),
PAGE_SIZE);
ASSERT(grow);
if (__builtin_wasm_memory_grow(0, grow >> PAGE_SIZE_LOG_2) == -1)
{
return NULL;
}
walloc_heap_size += grow;
}
struct page *ret = (struct page *)base;
size_t size = grow + preallocated;
ASSERT(size);
ASSERT_ALIGNED(size, PAGE_SIZE);
*n_allocated = size / PAGE_SIZE;
return ret;
}
static char *
allocate_chunk(struct page *page, unsigned idx, enum chunk_kind kind)
{
page->header.chunk_kinds[idx] = kind;
return page->chunks[idx].data;
}
// It's possible for splitting to produce a large object of size 248 (256 minus
// the header size) -- i.e. spanning a single chunk. In that case, push the
// chunk back on the GRANULES_32 small object freelist.
static void maybe_repurpose_single_chunk_large_objects_head(void)
{
if (large_objects->size < CHUNK_SIZE)
{
unsigned idx = get_chunk_index(large_objects);
char *ptr = allocate_chunk(get_page(large_objects), idx, GRANULES_32);
large_objects = large_objects->next;
struct freelist *head = (struct freelist *)ptr;
head->next = small_object_freelists[GRANULES_32];
small_object_freelists[GRANULES_32] = head;
}
}
// If there have been any large-object frees since the last large object
// allocation, go through the freelist and merge any adjacent objects.
static int pending_large_object_compact = 0;
static struct large_object **
maybe_merge_free_large_object(struct large_object **prev)
{
struct large_object *obj = *prev;
while (1)
{
char *end = get_large_object_payload(obj) + obj->size;
ASSERT_ALIGNED((uintptr_t)end, CHUNK_SIZE);
unsigned chunk = get_chunk_index(end);
if (chunk < FIRST_ALLOCATABLE_CHUNK)
{
// Merging can't create a large object that newly spans the header chunk.
// This check also catches the end-of-heap case.
return prev;
}
struct page *page = get_page(end);
if (page->header.chunk_kinds[chunk] != FREE_LARGE_OBJECT)
{
return prev;
}
struct large_object *next = (struct large_object *)end;
struct large_object **prev_prev = &large_objects, *walk = large_objects;
while (1)
{
ASSERT(walk);
if (walk == next)
{
obj->size += LARGE_OBJECT_HEADER_SIZE + walk->size;
*prev_prev = walk->next;
if (prev == &walk->next)
{
prev = prev_prev;
}
break;
}
prev_prev = &walk->next;
walk = walk->next;
}
}
}
static void
maybe_compact_free_large_objects(void)
{
if (pending_large_object_compact)
{
pending_large_object_compact = 0;
struct large_object **prev = &large_objects;
while (*prev)
{
prev = &(*maybe_merge_free_large_object(prev))->next;
}
}
}
// Allocate a large object with enough space for SIZE payload bytes. Returns a
// large object with a header, aligned on a chunk boundary, whose payload size
// may be larger than SIZE, and whose total size (header included) is
// chunk-aligned. Either a suitable allocation is found in the large object
// freelist, or we ask the OS for some more pages and treat those pages as a
// large object. If the allocation fits in that large object and there's more
// than an aligned chunk's worth of data free at the end, the large object is
// split.
//
// The return value's corresponding chunk in the page as starting a large
// object.
static struct large_object *
allocate_large_object(size_t size)
{
maybe_compact_free_large_objects();
struct large_object *best = NULL, **best_prev = &large_objects;
size_t best_size = -1;
for (struct large_object **prev = &large_objects, *walk = large_objects;
walk;
prev = &walk->next, walk = walk->next)
{
if (walk->size >= size && walk->size < best_size)
{
best_size = walk->size;
best = walk;
best_prev = prev;
if (best_size + LARGE_OBJECT_HEADER_SIZE == align(size + LARGE_OBJECT_HEADER_SIZE, CHUNK_SIZE))
// Not going to do any better than this; just return it.
break;
}
}
if (!best)
{
// The large object freelist doesn't have an object big enough for this
// allocation. Allocate one or more pages from the OS, and treat that new
// sequence of pages as a fresh large object. It will be split if
// necessary.
size_t size_with_header = size + sizeof(struct large_object);
size_t n_allocated = 0;
struct page *page = allocate_pages(size_with_header, &n_allocated);
if (!page)
{
return NULL;
}
char *ptr = allocate_chunk(page, FIRST_ALLOCATABLE_CHUNK, LARGE_OBJECT);
best = (struct large_object *)ptr;
size_t page_header = ptr - ((char *)page);
best->next = large_objects;
best->size = best_size =
n_allocated * PAGE_SIZE - page_header - LARGE_OBJECT_HEADER_SIZE;
ASSERT(best_size >= size_with_header);
}
allocate_chunk(get_page(best), get_chunk_index(best), LARGE_OBJECT);
struct large_object *next = best->next;
*best_prev = next;
size_t tail_size = (best_size - size) & ~CHUNK_MASK;
if (tail_size)
{
// The best-fitting object has 1 or more aligned chunks free after the
// requested allocation; split the tail off into a fresh aligned object.
struct page *start_page = get_page(best);
char *start = get_large_object_payload(best);
char *end = start + best_size;
if (start_page == get_page(end - tail_size - 1))
{
// The allocation does not span a page boundary; yay.
ASSERT_ALIGNED((uintptr_t)end, CHUNK_SIZE);
}
else if (size < PAGE_SIZE - LARGE_OBJECT_HEADER_SIZE - CHUNK_SIZE)
{
// If the allocation itself smaller than a page, split off the head, then
// fall through to maybe split the tail.
ASSERT_ALIGNED((uintptr_t)end, PAGE_SIZE);
size_t first_page_size = PAGE_SIZE - (((uintptr_t)start) & PAGE_MASK);
struct large_object *head = best;
allocate_chunk(start_page, get_chunk_index(start), FREE_LARGE_OBJECT);
head->size = first_page_size;
head->next = large_objects;
large_objects = head;
maybe_repurpose_single_chunk_large_objects_head();
struct page *next_page = start_page + 1;
char *ptr = allocate_chunk(next_page, FIRST_ALLOCATABLE_CHUNK, LARGE_OBJECT);
best = (struct large_object *)ptr;
best->size = best_size = best_size - first_page_size - CHUNK_SIZE - LARGE_OBJECT_HEADER_SIZE;
ASSERT(best_size >= size);
start = get_large_object_payload(best);
tail_size = (best_size - size) & ~CHUNK_MASK;
}
else
{
// A large object that spans more than one page will consume all of its
// tail pages. Therefore if the split traverses a page boundary, round up
// to page size.
ASSERT_ALIGNED((uintptr_t)end, PAGE_SIZE);
size_t first_page_size = PAGE_SIZE - (((uintptr_t)start) & PAGE_MASK);
size_t tail_pages_size = align(size - first_page_size, PAGE_SIZE);
size = first_page_size + tail_pages_size;
tail_size = best_size - size;
}
best->size -= tail_size;
unsigned tail_idx = get_chunk_index(end - tail_size);
while (tail_idx < FIRST_ALLOCATABLE_CHUNK && tail_size)
{
// We would be splitting in a page header; don't do that.
tail_size -= CHUNK_SIZE;
tail_idx++;
}
if (tail_size)
{
struct page *page = get_page(end - tail_size);
char *tail_ptr = allocate_chunk(page, tail_idx, FREE_LARGE_OBJECT);
struct large_object *tail = (struct large_object *)tail_ptr;
tail->next = large_objects;
tail->size = tail_size - LARGE_OBJECT_HEADER_SIZE;
ASSERT_ALIGNED((uintptr_t)(get_large_object_payload(tail) + tail->size), CHUNK_SIZE);
large_objects = tail;
maybe_repurpose_single_chunk_large_objects_head();
}
}
ASSERT_ALIGNED((uintptr_t)(get_large_object_payload(best) + best->size), CHUNK_SIZE);
return best;
}
static struct freelist *
obtain_small_objects(enum chunk_kind kind)
{
struct freelist **whole_chunk_freelist = &small_object_freelists[GRANULES_32];
void *chunk;
if (*whole_chunk_freelist)
{
chunk = *whole_chunk_freelist;
*whole_chunk_freelist = (*whole_chunk_freelist)->next;
}
else
{
chunk = allocate_large_object(0);
if (!chunk)
{
return NULL;
}
}
char *ptr = allocate_chunk(get_page(chunk), get_chunk_index(chunk), kind);
char *end = ptr + CHUNK_SIZE;
struct freelist *next = NULL;
size_t size = chunk_kind_to_granules(kind) * GRANULE_SIZE;
for (size_t i = size; i <= CHUNK_SIZE; i += size)
{
struct freelist *head = (struct freelist *)(end - i);
head->next = next;
next = head;
}
return next;
}
static inline size_t size_to_granules(size_t size)
{
return (size + GRANULE_SIZE - 1) >> GRANULE_SIZE_LOG_2;
}
static struct freelist **get_small_object_freelist(enum chunk_kind kind)
{
ASSERT(kind < SMALL_OBJECT_CHUNK_KINDS);
return &small_object_freelists[kind];
}
static void *
allocate_small(enum chunk_kind kind)
{
struct freelist **loc = get_small_object_freelist(kind);
if (!*loc)
{
struct freelist *freelist = obtain_small_objects(kind);
if (!freelist)
{
return NULL;
}
*loc = freelist;
}
struct freelist *ret = *loc;
*loc = ret->next;
return (void *)ret;
}
static void *
allocate_large(size_t size)
{
struct large_object *obj = allocate_large_object(size);
return obj ? get_large_object_payload(obj) : NULL;
}
void *
malloc(size_t size)
{
size_t granules = size_to_granules(size);
enum chunk_kind kind = granules_to_chunk_kind(granules);
return (kind == LARGE_OBJECT) ? allocate_large(size) : allocate_small(kind);
}
void free(void *ptr)
{
if (!ptr)
return;
struct page *page = get_page(ptr);
unsigned chunk = get_chunk_index(ptr);
uint8_t kind = page->header.chunk_kinds[chunk];
if (kind == LARGE_OBJECT)
{
struct large_object *obj = get_large_object(ptr);
obj->next = large_objects;
large_objects = obj;
allocate_chunk(page, chunk, FREE_LARGE_OBJECT);
pending_large_object_compact = 1;
}
else
{
size_t granules = kind;
struct freelist **loc = get_small_object_freelist(granules);
struct freelist *obj = ptr;
obj->next = *loc;
*loc = obj;
}
}