From 1277ce22f8481780bb67120b1cb4c8b127f034cc Mon Sep 17 00:00:00 2001 From: Ulises Jeremias Cornejo Fandos Date: Fri, 27 Dec 2019 00:08:17 -0300 Subject: [PATCH] math: factorial submodule --- vlib/math/fact_tables.v | 177 ------------ vlib/math/factorial/factorial.v | 80 ++++++ vlib/math/factorial/factorial_tables.v | 374 +++++++++++++++++++++++++ vlib/math/factorial/factorial_test.v | 14 + vlib/math/math.v | 13 - vlib/math/math_test.v | 6 - 6 files changed, 468 insertions(+), 196 deletions(-) delete mode 100644 vlib/math/fact_tables.v create mode 100644 vlib/math/factorial/factorial.v create mode 100644 vlib/math/factorial/factorial_tables.v create mode 100644 vlib/math/factorial/factorial_test.v diff --git a/vlib/math/fact_tables.v b/vlib/math/fact_tables.v deleted file mode 100644 index a6e3d5fdeb..0000000000 --- a/vlib/math/fact_tables.v +++ /dev/null @@ -1,177 +0,0 @@ -module math - -const ( - factorials = [f64(1.000000000000000000000e+0),/* 0! */ - 1.000000000000000000000e+0,/* 1! */ - 2.000000000000000000000e+0,/* 2! */ - 6.000000000000000000000e+0,/* 3! */ - 2.400000000000000000000e+1,/* 4! */ - 1.200000000000000000000e+2,/* 5! */ - 7.200000000000000000000e+2,/* 6! */ - 5.040000000000000000000e+3,/* 7! */ - 4.032000000000000000000e+4,/* 8! */ - 3.628800000000000000000e+5,/* 9! */ - 3.628800000000000000000e+6,/* 10! */ - 3.991680000000000000000e+7,/* 11! */ - 4.790016000000000000000e+8,/* 12! */ - 6.227020800000000000000e+9,/* 13! */ - 8.717829120000000000000e+10,/* 14! */ - 1.307674368000000000000e+12,/* 15! */ - 2.092278988800000000000e+13,/* 16! */ - 3.556874280960000000000e+14,/* 17! */ - 6.402373705728000000000e+15,/* 18! */ - 1.216451004088320000000e+17,/* 19! */ - 2.432902008176640000000e+18,/* 20! */ - 5.109094217170944000000e+19,/* 21! */ - 1.124000727777607680000e+21,/* 22! */ - 2.585201673888497664000e+22,/* 23! */ - 6.204484017332394393600e+23,/* 24! */ - 1.551121004333098598400e+25,/* 25! */ - 4.032914611266056355840e+26,/* 26! */ - 1.088886945041835216077e+28,/* 27! */ - 3.048883446117138605015e+29,/* 28! */ - 8.841761993739701954544e+30,/* 29! */ - 2.652528598121910586363e+32,/* 30! */ - 8.222838654177922817726e+33,/* 31! */ - 2.631308369336935301672e+35,/* 32! */ - 8.683317618811886495518e+36,/* 33! */ - 2.952327990396041408476e+38,/* 34! */ - 1.033314796638614492967e+40,/* 35! */ - 3.719933267899012174680e+41,/* 36! */ - 1.376375309122634504632e+43,/* 37! */ - 5.230226174666011117600e+44,/* 38! */ - 2.039788208119744335864e+46,/* 39! */ - 8.159152832478977343456e+47,/* 40! */ - 3.345252661316380710817e+49,/* 41! */ - 1.405006117752879898543e+51,/* 42! */ - 6.041526306337383563736e+52,/* 43! */ - 2.658271574788448768044e+54,/* 44! */ - 1.196222208654801945620e+56,/* 45! */ - 5.502622159812088949850e+57,/* 46! */ - 2.586232415111681806430e+59,/* 47! */ - 1.241391559253607267086e+61,/* 48! */ - 6.082818640342675608723e+62,/* 49! */ - 3.041409320171337804361e+64,/* 50! */ - 1.551118753287382280224e+66,/* 51! */ - 8.065817517094387857166e+67,/* 52! */ - 4.274883284060025564298e+69,/* 53! */ - 2.308436973392413804721e+71,/* 54! */ - 1.269640335365827592597e+73,/* 55! */ - 7.109985878048634518540e+74,/* 56! */ - 4.052691950487721675568e+76,/* 57! */ - 2.350561331282878571829e+78,/* 58! */ - 1.386831185456898357379e+80,/* 59! */ - 8.320987112741390144276e+81,/* 60! */ - 5.075802138772247988009e+83,/* 61! */ - 3.146997326038793752565e+85,/* 62! */ - 1.982608315404440064116e+87,/* 63! */ - 1.268869321858841641034e+89,/* 64! */ - 8.247650592082470666723e+90,/* 65! */ - 5.443449390774430640037e+92,/* 66! */ - 3.647111091818868528825e+94,/* 67! */ - 2.480035542436830599601e+96,/* 68! */ - 1.711224524281413113725e+98,/* 69! */ - 1.197857166996989179607e+100,/* 70! */ - 8.504785885678623175212e+101,/* 71! */ - 6.123445837688608686152e+103,/* 72! */ - 4.470115461512684340891e+105,/* 73! */ - 3.307885441519386412260e+107,/* 74! */ - 2.480914081139539809195e+109,/* 75! */ - 1.885494701666050254988e+111,/* 76! */ - 1.451830920282858696341e+113,/* 77! */ - 1.132428117820629783146e+115,/* 78! */ - 8.946182130782975286851e+116,/* 79! */ - 7.156945704626380229481e+118,/* 80! */ - 5.797126020747367985880e+120,/* 81! */ - 4.753643337012841748421e+122,/* 82! */ - 3.945523969720658651190e+124,/* 83! */ - 3.314240134565353266999e+126,/* 84! */ - 2.817104114380550276949e+128,/* 85! */ - 2.422709538367273238177e+130,/* 86! */ - 2.107757298379527717214e+132,/* 87! */ - 1.854826422573984391148e+134,/* 88! */ - 1.650795516090846108122e+136,/* 89! */ - 1.485715964481761497310e+138,/* 90! */ - 1.352001527678402962552e+140,/* 91! */ - 1.243841405464130725548e+142,/* 92! */ - 1.156772507081641574759e+144,/* 93! */ - 1.087366156656743080274e+146,/* 94! */ - 1.032997848823905926260e+148,/* 95! */ - 9.916779348709496892096e+149,/* 96! */ - 9.619275968248211985333e+151,/* 97! */ - 9.426890448883247745626e+153,/* 98! */ - 9.332621544394415268170e+155,/* 99! */ - 9.332621544394415268170e+157,/* 100! */ - 9.425947759838359420852e+159,/* 101! */ - 9.614466715035126609269e+161,/* 102! */ - 9.902900716486180407547e+163,/* 103! */ - 1.029901674514562762385e+166,/* 104! */ - 1.081396758240290900504e+168,/* 105! */ - 1.146280563734708354534e+170,/* 106! */ - 1.226520203196137939352e+172,/* 107! */ - 1.324641819451828974500e+174,/* 108! */ - 1.443859583202493582205e+176,/* 109! */ - 1.588245541522742940425e+178,/* 110! */ - 1.762952551090244663872e+180,/* 111! */ - 1.974506857221074023537e+182,/* 112! */ - 2.231192748659813646597e+184,/* 113! */ - 2.543559733472187557120e+186,/* 114! */ - 2.925093693493015690688e+188,/* 115! */ - 3.393108684451898201198e+190,/* 116! */ - 3.969937160808720895402e+192,/* 117! */ - 4.684525849754290656574e+194,/* 118! */ - 5.574585761207605881323e+196,/* 119! */ - 6.689502913449127057588e+198,/* 120! */ - 8.094298525273443739682e+200,/* 121! */ - 9.875044200833601362412e+202,/* 122! */ - 1.214630436702532967577e+205,/* 123! */ - 1.506141741511140879795e+207,/* 124! */ - 1.882677176888926099744e+209,/* 125! */ - 2.372173242880046885677e+211,/* 126! */ - 3.012660018457659544810e+213,/* 127! */ - 3.856204823625804217357e+215,/* 128! */ - 4.974504222477287440390e+217,/* 129! */ - 6.466855489220473672507e+219,/* 130! */ - 8.471580690878820510985e+221,/* 131! */ - 1.118248651196004307450e+224,/* 132! */ - 1.487270706090685728908e+226,/* 133! */ - 1.992942746161518876737e+228,/* 134! */ - 2.690472707318050483595e+230,/* 135! */ - 3.659042881952548657690e+232,/* 136! */ - 5.012888748274991661035e+234,/* 137! */ - 6.917786472619488492228e+236,/* 138! */ - 9.615723196941089004197e+238,/* 139! */ - 1.346201247571752460588e+241,/* 140! */ - 1.898143759076170969429e+243,/* 141! */ - 2.695364137888162776589e+245,/* 142! */ - 3.854370717180072770522e+247,/* 143! */ - 5.550293832739304789551e+249,/* 144! */ - 8.047926057471991944849e+251,/* 145! */ - 1.174997204390910823948e+254,/* 146! */ - 1.727245890454638911203e+256,/* 147! */ - 2.556323917872865588581e+258,/* 148! */ - 3.808922637630569726986e+260,/* 149! */ - 5.713383956445854590479e+262,/* 150! */ - 8.627209774233240431623e+264,/* 151! */ - 1.311335885683452545607e+267,/* 152! */ - 2.006343905095682394778e+269,/* 153! */ - 3.089769613847350887959e+271,/* 154! */ - 4.789142901463393876336e+273,/* 155! */ - 7.471062926282894447084e+275,/* 156! */ - 1.172956879426414428192e+278,/* 157! */ - 1.853271869493734796544e+280,/* 158! */ - 2.946702272495038326504e+282,/* 159! */ - 4.714723635992061322407e+284,/* 160! */ - 7.590705053947218729075e+286,/* 161! */ - 1.229694218739449434110e+289,/* 162! */ - 2.004401576545302577600e+291,/* 163! */ - 3.287218585534296227263e+293,/* 164! */ - 5.423910666131588774984e+295,/* 165! */ - 9.003691705778437366474e+297,/* 166! */ - 1.503616514864999040201e+300,/* 167! */ - 2.526075744973198387538e+302,/* 168! */ - 4.269068009004705274939e+304,/* 169! */ - 7.257415615307998967397e+306/* 170! */ - ] -) - diff --git a/vlib/math/factorial/factorial.v b/vlib/math/factorial/factorial.v new file mode 100644 index 0000000000..8397ad2822 --- /dev/null +++ b/vlib/math/factorial/factorial.v @@ -0,0 +1,80 @@ +// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. + +// Module created by Ulises Jeremias Cornejo Fandos based on +// the definitions provided in https://scientificc.github.io/cmathl/ + +module factorial + +import math + +// factorial calculates the factorial of the provided value. +pub fn factorial(n f64) f64 { + // For a large postive argument (n >= FACTORIALS.len) return max_f64 + + if n >= FACTORIALS.len { + return math.max_f64 + } + + // Otherwise return n!. + if n == f64(i64(n)) && n >= 0.0 { + return FACTORIALS[i64(n)] + } + + return math.gamma(n + 1.0) +} + +// log_factorial calculates the log-factorial of the provided value. +pub fn log_factorial(n f64) f64 { + // For a large postive argument (n < 0) return max_f64 + + if n < 0 { + return -math.max_f64 + } + + // If n < N then return ln(n!). + + if n != f64(i64(n)) { + return math.log_gamma(n+1) + } else if n < LOG_FACTORIALS.len { + return LOG_FACTORIALS[i64(n)] + } + + // Otherwise return asymptotic expansion of ln(n!). + + return log_factorial_asymptotic_expansion(int(n)) +} + +fn log_factorial_asymptotic_expansion(n int) f64 { + m := 6 + mut term := []f64 + xx := f64((n + 1) * (n + 1)) + mut xj := f64(n + 1) + + log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj) + + mut i := 0 + + for i = 0; i < m; i++ { + term << B[i] / xj + xj *= xx + } + + mut sum := term[m-1] + + for i = m - 2; i >= 0; i-- { + if math.abs(sum) <= math.abs(term[i]) { + break + } + + sum = term[i] + } + + for i >= 0 { + sum += term[i] + i-- + } + + return log_factorial + sum +} diff --git a/vlib/math/factorial/factorial_tables.v b/vlib/math/factorial/factorial_tables.v new file mode 100644 index 0000000000..ee2b9f00b6 --- /dev/null +++ b/vlib/math/factorial/factorial_tables.v @@ -0,0 +1,374 @@ +// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. + +module factorial + +const ( + log_sqrt_2pi = 9.18938533204672741780329736e-1 + + B = [ + /* Bernoulli numbers B(2),B(4),B(6),...,B(20). Only B(2),...,B(10) currently + * used. + */ + f64(1.0 / (6.0 * 2.0 * 1.0)), + -1.0 / (30.0 * 4.0 * 3.0), + 1.0 / (42.0 * 6.0 * 5.0), + -1.0 / (30.0 * 8.0 * 7.0), + 5.0 / (66.0 * 10.0 * 9.0), + -691.0 / (2730.0 * 12.0 * 11.0), + 7.0 / (6.0 * 14.0 * 13.0), + -3617.0 / (510.0 * 16.0 * 15.0), + 43867.0 / (796.0 * 18.0 * 17.0), + -174611.0 / (330.0 * 20.0 * 19.0) + ] + + FACTORIALS = [ + f64(1.000000000000000000000e+0), /* 0! */ + 1.000000000000000000000e+0, /* 1! */ + 2.000000000000000000000e+0, /* 2! */ + 6.000000000000000000000e+0, /* 3! */ + 2.400000000000000000000e+1, /* 4! */ + 1.200000000000000000000e+2, /* 5! */ + 7.200000000000000000000e+2, /* 6! */ + 5.040000000000000000000e+3, /* 7! */ + 4.032000000000000000000e+4, /* 8! */ + 3.628800000000000000000e+5, /* 9! */ + 3.628800000000000000000e+6, /* 10! */ + 3.991680000000000000000e+7, /* 11! */ + 4.790016000000000000000e+8, /* 12! */ + 6.227020800000000000000e+9, /* 13! */ + 8.717829120000000000000e+10, /* 14! */ + 1.307674368000000000000e+12, /* 15! */ + 2.092278988800000000000e+13, /* 16! */ + 3.556874280960000000000e+14, /* 17! */ + 6.402373705728000000000e+15, /* 18! */ + 1.216451004088320000000e+17, /* 19! */ + 2.432902008176640000000e+18, /* 20! */ + 5.109094217170944000000e+19, /* 21! */ + 1.124000727777607680000e+21, /* 22! */ + 2.585201673888497664000e+22, /* 23! */ + 6.204484017332394393600e+23, /* 24! */ + 1.551121004333098598400e+25, /* 25! */ + 4.032914611266056355840e+26, /* 26! */ + 1.088886945041835216077e+28, /* 27! */ + 3.048883446117138605015e+29, /* 28! */ + 8.841761993739701954544e+30, /* 29! */ + 2.652528598121910586363e+32, /* 30! */ + 8.222838654177922817726e+33, /* 31! */ + 2.631308369336935301672e+35, /* 32! */ + 8.683317618811886495518e+36, /* 33! */ + 2.952327990396041408476e+38, /* 34! */ + 1.033314796638614492967e+40, /* 35! */ + 3.719933267899012174680e+41, /* 36! */ + 1.376375309122634504632e+43, /* 37! */ + 5.230226174666011117600e+44, /* 38! */ + 2.039788208119744335864e+46, /* 39! */ + 8.159152832478977343456e+47, /* 40! */ + 3.345252661316380710817e+49, /* 41! */ + 1.405006117752879898543e+51, /* 42! */ + 6.041526306337383563736e+52, /* 43! */ + 2.658271574788448768044e+54, /* 44! */ + 1.196222208654801945620e+56, /* 45! */ + 5.502622159812088949850e+57, /* 46! */ + 2.586232415111681806430e+59, /* 47! */ + 1.241391559253607267086e+61, /* 48! */ + 6.082818640342675608723e+62, /* 49! */ + 3.041409320171337804361e+64, /* 50! */ + 1.551118753287382280224e+66, /* 51! */ + 8.065817517094387857166e+67, /* 52! */ + 4.274883284060025564298e+69, /* 53! */ + 2.308436973392413804721e+71, /* 54! */ + 1.269640335365827592597e+73, /* 55! */ + 7.109985878048634518540e+74, /* 56! */ + 4.052691950487721675568e+76, /* 57! */ + 2.350561331282878571829e+78, /* 58! */ + 1.386831185456898357379e+80, /* 59! */ + 8.320987112741390144276e+81, /* 60! */ + 5.075802138772247988009e+83, /* 61! */ + 3.146997326038793752565e+85, /* 62! */ + 1.982608315404440064116e+87, /* 63! */ + 1.268869321858841641034e+89, /* 64! */ + 8.247650592082470666723e+90, /* 65! */ + 5.443449390774430640037e+92, /* 66! */ + 3.647111091818868528825e+94, /* 67! */ + 2.480035542436830599601e+96, /* 68! */ + 1.711224524281413113725e+98, /* 69! */ + 1.197857166996989179607e+100, /* 70! */ + 8.504785885678623175212e+101, /* 71! */ + 6.123445837688608686152e+103, /* 72! */ + 4.470115461512684340891e+105, /* 73! */ + 3.307885441519386412260e+107, /* 74! */ + 2.480914081139539809195e+109, /* 75! */ + 1.885494701666050254988e+111, /* 76! */ + 1.451830920282858696341e+113, /* 77! */ + 1.132428117820629783146e+115, /* 78! */ + 8.946182130782975286851e+116, /* 79! */ + 7.156945704626380229481e+118, /* 80! */ + 5.797126020747367985880e+120, /* 81! */ + 4.753643337012841748421e+122, /* 82! */ + 3.945523969720658651190e+124, /* 83! */ + 3.314240134565353266999e+126, /* 84! */ + 2.817104114380550276949e+128, /* 85! */ + 2.422709538367273238177e+130, /* 86! */ + 2.107757298379527717214e+132, /* 87! */ + 1.854826422573984391148e+134, /* 88! */ + 1.650795516090846108122e+136, /* 89! */ + 1.485715964481761497310e+138, /* 90! */ + 1.352001527678402962552e+140, /* 91! */ + 1.243841405464130725548e+142, /* 92! */ + 1.156772507081641574759e+144, /* 93! */ + 1.087366156656743080274e+146, /* 94! */ + 1.032997848823905926260e+148, /* 95! */ + 9.916779348709496892096e+149, /* 96! */ + 9.619275968248211985333e+151, /* 97! */ + 9.426890448883247745626e+153, /* 98! */ + 9.332621544394415268170e+155, /* 99! */ + 9.332621544394415268170e+157, /* 100! */ + 9.425947759838359420852e+159, /* 101! */ + 9.614466715035126609269e+161, /* 102! */ + 9.902900716486180407547e+163, /* 103! */ + 1.029901674514562762385e+166, /* 104! */ + 1.081396758240290900504e+168, /* 105! */ + 1.146280563734708354534e+170, /* 106! */ + 1.226520203196137939352e+172, /* 107! */ + 1.324641819451828974500e+174, /* 108! */ + 1.443859583202493582205e+176, /* 109! */ + 1.588245541522742940425e+178, /* 110! */ + 1.762952551090244663872e+180, /* 111! */ + 1.974506857221074023537e+182, /* 112! */ + 2.231192748659813646597e+184, /* 113! */ + 2.543559733472187557120e+186, /* 114! */ + 2.925093693493015690688e+188, /* 115! */ + 3.393108684451898201198e+190, /* 116! */ + 3.969937160808720895402e+192, /* 117! */ + 4.684525849754290656574e+194, /* 118! */ + 5.574585761207605881323e+196, /* 119! */ + 6.689502913449127057588e+198, /* 120! */ + 8.094298525273443739682e+200, /* 121! */ + 9.875044200833601362412e+202, /* 122! */ + 1.214630436702532967577e+205, /* 123! */ + 1.506141741511140879795e+207, /* 124! */ + 1.882677176888926099744e+209, /* 125! */ + 2.372173242880046885677e+211, /* 126! */ + 3.012660018457659544810e+213, /* 127! */ + 3.856204823625804217357e+215, /* 128! */ + 4.974504222477287440390e+217, /* 129! */ + 6.466855489220473672507e+219, /* 130! */ + 8.471580690878820510985e+221, /* 131! */ + 1.118248651196004307450e+224, /* 132! */ + 1.487270706090685728908e+226, /* 133! */ + 1.992942746161518876737e+228, /* 134! */ + 2.690472707318050483595e+230, /* 135! */ + 3.659042881952548657690e+232, /* 136! */ + 5.012888748274991661035e+234, /* 137! */ + 6.917786472619488492228e+236, /* 138! */ + 9.615723196941089004197e+238, /* 139! */ + 1.346201247571752460588e+241, /* 140! */ + 1.898143759076170969429e+243, /* 141! */ + 2.695364137888162776589e+245, /* 142! */ + 3.854370717180072770522e+247, /* 143! */ + 5.550293832739304789551e+249, /* 144! */ + 8.047926057471991944849e+251, /* 145! */ + 1.174997204390910823948e+254, /* 146! */ + 1.727245890454638911203e+256, /* 147! */ + 2.556323917872865588581e+258, /* 148! */ + 3.808922637630569726986e+260, /* 149! */ + 5.713383956445854590479e+262, /* 150! */ + 8.627209774233240431623e+264, /* 151! */ + 1.311335885683452545607e+267, /* 152! */ + 2.006343905095682394778e+269, /* 153! */ + 3.089769613847350887959e+271, /* 154! */ + 4.789142901463393876336e+273, /* 155! */ + 7.471062926282894447084e+275, /* 156! */ + 1.172956879426414428192e+278, /* 157! */ + 1.853271869493734796544e+280, /* 158! */ + 2.946702272495038326504e+282, /* 159! */ + 4.714723635992061322407e+284, /* 160! */ + 7.590705053947218729075e+286, /* 161! */ + 1.229694218739449434110e+289, /* 162! */ + 2.004401576545302577600e+291, /* 163! */ + 3.287218585534296227263e+293, /* 164! */ + 5.423910666131588774984e+295, /* 165! */ + 9.003691705778437366474e+297, /* 166! */ + 1.503616514864999040201e+300, /* 167! */ + 2.526075744973198387538e+302, /* 168! */ + 4.269068009004705274939e+304, /* 169! */ + 7.257415615307998967397e+306 /* 170! */ + ] + + LOG_FACTORIALS = [ + f64(0.000000000000000000000e+0), /* 0! */ + 0.000000000000000000000e+0, /* 1! */ + 6.931471805599453094172e-1, /* 2! */ + 1.791759469228055000812e+0, /* 3! */ + 3.178053830347945619647e+0, /* 4! */ + 4.787491742782045994248e+0, /* 5! */ + 6.579251212010100995060e+0, /* 6! */ + 8.525161361065414300166e+0, /* 7! */ + 1.060460290274525022842e+1, /* 8! */ + 1.280182748008146961121e+1, /* 9! */ + 1.510441257307551529523e+1, /* 10! */ + 1.750230784587388583929e+1, /* 11! */ + 1.998721449566188614952e+1, /* 12! */ + 2.255216385312342288557e+1, /* 13! */ + 2.519122118273868150009e+1, /* 14! */ + 2.789927138384089156609e+1, /* 15! */ + 3.067186010608067280376e+1, /* 16! */ + 3.350507345013688888401e+1, /* 17! */ + 3.639544520803305357622e+1, /* 18! */ + 3.933988418719949403622e+1, /* 19! */ + 4.233561646075348502966e+1, /* 20! */ + 4.538013889847690802616e+1, /* 21! */ + 4.847118135183522387964e+1, /* 22! */ + 5.160667556776437357045e+1, /* 23! */ + 5.478472939811231919009e+1, /* 24! */ + 5.800360522298051993929e+1, /* 25! */ + 6.126170176100200198477e+1, /* 26! */ + 6.455753862700633105895e+1, /* 27! */ + 6.788974313718153498289e+1, /* 28! */ + 7.125703896716800901007e+1, /* 29! */ + 7.465823634883016438549e+1, /* 30! */ + 7.809222355331531063142e+1, /* 31! */ + 8.155795945611503717850e+1, /* 32! */ + 8.505446701758151741396e+1, /* 33! */ + 8.858082754219767880363e+1, /* 34! */ + 9.213617560368709248333e+1, /* 35! */ + 9.571969454214320248496e+1, /* 36! */ + 9.933061245478742692933e+1, /* 37! */ + 1.029681986145138126988e+2, /* 38! */ + 1.066317602606434591262e+2, /* 39! */ + 1.103206397147573954291e+2, /* 40! */ + 1.140342117814617032329e+2, /* 41! */ + 1.177718813997450715388e+2, /* 42! */ + 1.215330815154386339623e+2, /* 43! */ + 1.253172711493568951252e+2, /* 44! */ + 1.291239336391272148826e+2, /* 45! */ + 1.329525750356163098828e+2, /* 46! */ + 1.368027226373263684696e+2, /* 47! */ + 1.406739236482342593987e+2, /* 48! */ + 1.445657439463448860089e+2, /* 49! */ + 1.484777669517730320675e+2, /* 50! */ + 1.524095925844973578392e+2, /* 51! */ + 1.563608363030787851941e+2, /* 52! */ + 1.603311282166309070282e+2, /* 53! */ + 1.643201122631951814118e+2, /* 54! */ + 1.683274454484276523305e+2, /* 55! */ + 1.723527971391628015638e+2, /* 56! */ + 1.763958484069973517152e+2, /* 57! */ + 1.804562914175437710518e+2, /* 58! */ + 1.845338288614494905025e+2, /* 59! */ + 1.886281734236715911873e+2, /* 60! */ + 1.927390472878449024360e+2, /* 61! */ + 1.968661816728899939914e+2, /* 62! */ + 2.010093163992815266793e+2, /* 63! */ + 2.051681994826411985358e+2, /* 64! */ + 2.093425867525368356464e+2, /* 65! */ + 2.135322414945632611913e+2, /* 66! */ + 2.177369341139542272510e+2, /* 67! */ + 2.219564418191303339501e+2, /* 68! */ + 2.261905483237275933323e+2, /* 69! */ + 2.304390435657769523214e+2, /* 70! */ + 2.347017234428182677427e+2, /* 71! */ + 2.389783895618343230538e+2, /* 72! */ + 2.432688490029827141829e+2, /* 73! */ + 2.475729140961868839366e+2, /* 74! */ + 2.518904022097231943772e+2, /* 75! */ + 2.562211355500095254561e+2, /* 76! */ + 2.605649409718632093053e+2, /* 77! */ + 2.649216497985528010421e+2, /* 78! */ + 2.692910976510198225363e+2, /* 79! */ + 2.736731242856937041486e+2, /* 80! */ + 2.780675734403661429141e+2, /* 81! */ + 2.824742926876303960274e+2, /* 82! */ + 2.868931332954269939509e+2, /* 83! */ + 2.913239500942703075662e+2, /* 84! */ + 2.957666013507606240211e+2, /* 85! */ + 3.002209486470141317540e+2, /* 86! */ + 3.046868567656687154726e+2, /* 87! */ + 3.091641935801469219449e+2, /* 88! */ + 3.136528299498790617832e+2, /* 89! */ + 3.181526396202093268500e+2, /* 90! */ + 3.226634991267261768912e+2, /* 91! */ + 3.271852877037752172008e+2, /* 92! */ + 3.317178871969284731381e+2, /* 93! */ + 3.362611819791984770344e+2, /* 94! */ + 3.408150588707990178690e+2, /* 95! */ + 3.453794070622668541074e+2, /* 96! */ + 3.499541180407702369296e+2, /* 97! */ + 3.545390855194408088492e+2, /* 98! */ + 3.591342053695753987760e+2, /* 99! */ + 3.637393755555634901441e+2, /* 100! */ + 3.683544960724047495950e+2, /* 101! */ + 3.729794688856890206760e+2, /* 102! */ + 3.776141978739186564468e+2, /* 103! */ + 3.822585887730600291111e+2, /* 104! */ + 3.869125491232175524822e+2, /* 105! */ + 3.915759882173296196258e+2, /* 106! */ + 3.962488170517915257991e+2, /* 107! */ + 4.009309482789157454921e+2, /* 108! */ + 4.056222961611448891925e+2, /* 109! */ + 4.103227765269373054205e+2, /* 110! */ + 4.150323067282496395563e+2, /* 111! */ + 4.197508055995447340991e+2, /* 112! */ + 4.244781934182570746677e+2, /* 113! */ + 4.292143918666515701285e+2, /* 114! */ + 4.339593239950148201939e+2, /* 115! */ + 4.387129141861211848399e+2, /* 116! */ + 4.434750881209189409588e+2, /* 117! */ + 4.482457727453846057188e+2, /* 118! */ + 4.530248962384961351041e+2, /* 119! */ + 4.578123879812781810984e+2, /* 120! */ + 4.626081785268749221865e+2, /* 121! */ + 4.674121995716081787447e+2, /* 122! */ + 4.722243839269805962399e+2, /* 123! */ + 4.770446654925856331047e+2, /* 124! */ + 4.818729792298879342285e+2, /* 125! */ + 4.867092611368394122258e+2, /* 126! */ + 4.915534482232980034989e+2, /* 127! */ + 4.964054784872176206648e+2, /* 128! */ + 5.012652908915792927797e+2, /* 129! */ + 5.061328253420348751997e+2, /* 130! */ + 5.110080226652360267439e+2, /* 131! */ + 5.158908245878223975982e+2, /* 132! */ + 5.207811737160441513633e+2, /* 133! */ + 5.256790135159950627324e+2, /* 134! */ + 5.305842882944334921812e+2, /* 135! */ + 5.354969431801695441897e+2, /* 136! */ + 5.404169241059976691050e+2, /* 137! */ + 5.453441777911548737966e+2, /* 138! */ + 5.502786517242855655538e+2, /* 139! */ + 5.552202941468948698523e+2, /* 140! */ + 5.601690540372730381305e+2, /* 141! */ + 5.651248810948742988613e+2, /* 142! */ + 5.700877257251342061414e+2, /* 143! */ + 5.750575390247102067619e+2, /* 144! */ + 5.800342727671307811636e+2, /* 145! */ + 5.850178793888391176022e+2, /* 146! */ + 5.900083119756178539038e+2, /* 147! */ + 5.950055242493819689670e+2, /* 148! */ + 6.000094705553274281080e+2, /* 149! */ + 6.050201058494236838580e+2, /* 150! */ + 6.100373856862386081868e+2, /* 151! */ + 6.150612662070848845750e+2, /* 152! */ + 6.200917041284773200381e+2, /* 153! */ + 6.251286567308909491967e+2, /* 154! */ + 6.301720818478101958172e+2, /* 155! */ + 6.352219378550597328635e+2, /* 156! */ + 6.402781836604080409209e+2, /* 157! */ + 6.453407786934350077245e+2, /* 158! */ + 6.504096828956552392500e+2, /* 159! */ + 6.554848567108890661717e+2, /* 160! */ + 6.605662610758735291676e+2, /* 161! */ + 6.656538574111059132426e+2, /* 162! */ + 6.707476076119126755767e+2, /* 163! */ + 6.758474740397368739994e+2, /* 164! */ + 6.809534195136374546094e+2, /* 165! */ + 6.860654073019939978423e+2, /* 166! */ + 6.911834011144107529496e+2, /* 167! */ + 6.963073650938140118743e+2, /* 168! */ + 7.014372638087370853465e+2, /* 169! */ + 7.065730622457873471107e+2, /* 170! */ + 7.117147258022900069535e+2, /* 171! */ + ] +) diff --git a/vlib/math/factorial/factorial_test.v b/vlib/math/factorial/factorial_test.v new file mode 100644 index 0000000000..539ccb05be --- /dev/null +++ b/vlib/math/factorial/factorial_test.v @@ -0,0 +1,14 @@ +import math +import math.factorial as fact + +fn test_factorial() { + assert fact.factorial(12) == 479001600 + assert fact.factorial(5) == 120 + assert fact.factorial(0) == 1 +} + +fn test_log_factorial() { + assert fact.log_factorial(12) == math.log(479001600) + assert fact.log_factorial(5) == math.log(120) + assert fact.log_factorial(0) == math.log(1) +} \ No newline at end of file diff --git a/vlib/math/math.v b/vlib/math/math.v index 50d20c1a4a..ad241dcb88 100644 --- a/vlib/math/math.v +++ b/vlib/math/math.v @@ -181,19 +181,6 @@ pub fn exp2(a f64) f64 { return C.exp2(a) } -// factorial calculates the factorial of the provided value. -pub fn factorial(n f64) f64 { - // For a large postive argument (n >= factorials.len) return max_f64 - if n >= factorials.len { - return max_f64 - } - // Otherwise return n!. - if n == f64(i64(n)) && n >= 0.0 { - return factorials[i64(n)] - } - return gamma(n + 1.0) -} - // floor returns the nearest f64 lower or equal of the provided value. pub fn floor(a f64) f64 { return C.floor(a) diff --git a/vlib/math/math_test.v b/vlib/math/math_test.v index 3a50915909..15057c4c28 100644 --- a/vlib/math/math_test.v +++ b/vlib/math/math_test.v @@ -27,12 +27,6 @@ fn test_digits() { assert negative_digits[2] == -1 } -fn test_factorial() { - assert factorial(12) == 479001600 - assert factorial(5) == 120 - assert factorial(0) == 1 -} - fn test_erf() { assert erf(0) == 0 assert erf(1.5) + erf(-1.5) == 0