diff --git a/vlib/math/bits.c.v b/vlib/math/bits.c.v new file mode 100644 index 0000000000..27aab5eebc --- /dev/null +++ b/vlib/math/bits.c.v @@ -0,0 +1,12 @@ +module math + +// inf returns positive infinity if sign >= 0, negative infinity if sign < 0. +pub fn inf(sign int) f64 { + v := if sign >= 0 { uvinf } else { uvneginf } + return f64_from_bits(v) +} + +// nan returns an IEEE 754 ``not-a-number'' value. +pub fn nan() f64 { + return f64_from_bits(uvnan) +} diff --git a/vlib/math/bits.js.v b/vlib/math/bits.js.v new file mode 100644 index 0000000000..0bec945e21 --- /dev/null +++ b/vlib/math/bits.js.v @@ -0,0 +1,18 @@ +module math + +pub fn inf(sign int) f64 { + mut res := 0.0 + if sign >= 0 { + #res.val = Infinity + } else { + #res.val = -Infinity + } + return res +} + +pub fn nan() f64 { + mut res := 0.0 + #res.val = NaN + + return res +} diff --git a/vlib/math/bits.v b/vlib/math/bits.v index 0626504bcc..dbf2237f85 100644 --- a/vlib/math/bits.v +++ b/vlib/math/bits.v @@ -15,17 +15,6 @@ const ( frac_mask = ((u64(1) << u64(shift)) - u64(1)) ) -// inf returns positive infinity if sign >= 0, negative infinity if sign < 0. -pub fn inf(sign int) f64 { - v := if sign >= 0 { math.uvinf } else { math.uvneginf } - return f64_from_bits(v) -} - -// nan returns an IEEE 754 ``not-a-number'' value. -pub fn nan() f64 { - return f64_from_bits(math.uvnan) -} - // is_nan reports whether f is an IEEE 754 ``not-a-number'' value. pub fn is_nan(f f64) bool { // IEEE 754 says that only NaNs satisfy f != f. diff --git a/vlib/math/erf.v b/vlib/math/erf.v new file mode 100644 index 0000000000..043da317e8 --- /dev/null +++ b/vlib/math/erf.v @@ -0,0 +1,659 @@ +// Provides the [error](https://en.wikipedia.org/wiki/Error_function) and related functions +// based on https://github.com/unovor/frame/blob/master/statrs-0.10.0/src/function/erf.rs +// +// NOTE: This impl does not have the same precision as glibc impl of erf,erfc and others, we should fix this +// in the future. +module math + +// Coefficients for erf_impl polynominal +const ( + // Polynomial coefficients for a numerator of `erf_impl` + // in the interval [1e-10, 0.5]. + erf_impl_an = [0.00337916709551257388990745, -0.00073695653048167948530905, + -0.374732337392919607868241, 0.0817442448733587196071743, -0.0421089319936548595203468, + 0.0070165709512095756344528, -0.00495091255982435110337458, 0.000871646599037922480317225] + // Polynomial coefficients for a denominator of `erf_impl` + // in the interval [1e-10, 0.5] + erf_impl_ad = [1.0, -0.218088218087924645390535, 0.412542972725442099083918, + -0.0841891147873106755410271, 0.0655338856400241519690695, -0.0120019604454941768171266, + 0.00408165558926174048329689, -0.000615900721557769691924509] + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [0.5, 0.75]. + erf_impl_bn = [-0.0361790390718262471360258, 0.292251883444882683221149, + 0.281447041797604512774415, 0.125610208862766947294894, 0.0274135028268930549240776, + 0.00250839672168065762786937, + ] + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [0.5, 0.75]. + erf_impl_bd = [1.0, 1.8545005897903486499845, 1.43575803037831418074962, + 0.582827658753036572454135, 0.124810476932949746447682, 0.0113724176546353285778481] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [0.75, 1.25]. + erf_impl_cn = [ + -0.0397876892611136856954425, + 0.153165212467878293257683, + 0.191260295600936245503129, + 0.10276327061989304213645, + 0.029637090615738836726027, + 0.0046093486780275489468812, + 0.000307607820348680180548455, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [0.75, 1.25]. + erf_impl_cd = [ + 1.0, + 1.95520072987627704987886, + 1.64762317199384860109595, + 0.768238607022126250082483, + 0.209793185936509782784315, + 0.0319569316899913392596356, + 0.00213363160895785378615014, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [1.25, 2.25]. + erf_impl_dn = [ + -0.0300838560557949717328341, + 0.0538578829844454508530552, + 0.0726211541651914182692959, + 0.0367628469888049348429018, + 0.00964629015572527529605267, + 0.00133453480075291076745275, + 0.778087599782504251917881e-4, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [1.25, 2.25]. + erf_impl_dd = [ + 1.0, + 1.75967098147167528287343, + 1.32883571437961120556307, + 0.552528596508757581287907, + 0.133793056941332861912279, + 0.0179509645176280768640766, + 0.00104712440019937356634038, + -0.106640381820357337177643e-7, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [2.25, 3.5]. + erf_impl_en = [ + -0.0117907570137227847827732, + 0.014262132090538809896674, + 0.0202234435902960820020765, + 0.00930668299990432009042239, + 0.00213357802422065994322516, + 0.00025022987386460102395382, + 0.120534912219588189822126e-4, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [2.25, 3.5]. + erf_impl_ed = [ + 1.0, + 1.50376225203620482047419, + 0.965397786204462896346934, + 0.339265230476796681555511, + 0.0689740649541569716897427, + 0.00771060262491768307365526, + 0.000371421101531069302990367, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [3.5, 5.25]. + erf_impl_fn = [ + -0.00546954795538729307482955, + 0.00404190278731707110245394, + 0.0054963369553161170521356, + 0.00212616472603945399437862, + 0.000394984014495083900689956, + 0.365565477064442377259271e-4, + 0.135485897109932323253786e-5, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [3.5, 5.25]. + erf_impl_fd = [ + 1.0, + 1.21019697773630784832251, + 0.620914668221143886601045, + 0.173038430661142762569515, + 0.0276550813773432047594539, + 0.00240625974424309709745382, + 0.891811817251336577241006e-4, + -0.465528836283382684461025e-11, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [5.25, 8]. + erf_impl_gn = [ + -0.00270722535905778347999196, + 0.0013187563425029400461378, + 0.00119925933261002333923989, + 0.00027849619811344664248235, + 0.267822988218331849989363e-4, + 0.923043672315028197865066e-6, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [5.25, 8]. + erf_impl_gd = [ + 1.0, + 0.814632808543141591118279, + 0.268901665856299542168425, + 0.0449877216103041118694989, + 0.00381759663320248459168994, + 0.000131571897888596914350697, + 0.404815359675764138445257e-11, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [8, 11.5]. + erf_impl_hn = [ + -0.00109946720691742196814323, + 0.000406425442750422675169153, + 0.000274499489416900707787024, + 0.465293770646659383436343e-4, + 0.320955425395767463401993e-5, + 0.778286018145020892261936e-7, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [8, 11.5]. + erf_impl_hd = [ + 1.0, + 0.588173710611846046373373, + 0.139363331289409746077541, + 0.0166329340417083678763028, + 0.00100023921310234908642639, + 0.24254837521587225125068e-4, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [11.5, 17]. + erf_impl_in = [ + -0.00056907993601094962855594, + 0.000169498540373762264416984, + 0.518472354581100890120501e-4, + 0.382819312231928859704678e-5, + 0.824989931281894431781794e-7, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [11.5, 17]. + erf_impl_id = [ + 1.0, + 0.339637250051139347430323, + 0.043472647870310663055044, + 0.00248549335224637114641629, + 0.535633305337152900549536e-4, + -0.117490944405459578783846e-12, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [17, 24]. + erf_impl_jn = [ + -0.000241313599483991337479091, + 0.574224975202501512365975e-4, + 0.115998962927383778460557e-4, + 0.581762134402593739370875e-6, + 0.853971555085673614607418e-8, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [17, 24]. + erf_impl_jd = [ + 1.0, + 0.233044138299687841018015, + 0.0204186940546440312625597, + 0.000797185647564398289151125, + 0.117019281670172327758019e-4, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [24, 38]. + erf_impl_kn = [ + -0.000146674699277760365803642, + 0.162666552112280519955647e-4, + 0.269116248509165239294897e-5, + 0.979584479468091935086972e-7, + 0.101994647625723465722285e-8, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [24, 38]. + erf_impl_kd = [ + 1.0, + 0.165907812944847226546036, + 0.0103361716191505884359634, + 0.000286593026373868366935721, + 0.298401570840900340874568e-5, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [38, 60]. + erf_impl_ln = [ + -0.583905797629771786720406e-4, + 0.412510325105496173512992e-5, + 0.431790922420250949096906e-6, + 0.993365155590013193345569e-8, + 0.653480510020104699270084e-10, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [38, 60]. + erf_impl_ld = [ + 1.0, + 0.105077086072039915406159, + 0.00414278428675475620830226, + 0.726338754644523769144108e-4, + 0.477818471047398785369849e-6, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [60, 85]. + erf_impl_mn = [ + -0.196457797609229579459841e-4, + 0.157243887666800692441195e-5, + 0.543902511192700878690335e-7, + 0.317472492369117710852685e-9, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [60, 85]. + erf_impl_md = [ + 1.0, + 0.052803989240957632204885, + 0.000926876069151753290378112, + 0.541011723226630257077328e-5, + 0.535093845803642394908747e-15, + ] + + // Polynomial coefficients for a numerator in `erf_impl` + // in the interval [85, 110]. + erf_impl_nn = [ + -0.789224703978722689089794e-5, + 0.622088451660986955124162e-6, + 0.145728445676882396797184e-7, + 0.603715505542715364529243e-10, + ] + + // Polynomial coefficients for a denominator in `erf_impl` + // in the interval [85, 110]. + erf_impl_nd = [ + 1.0, + 0.0375328846356293715248719, + 0.000467919535974625308126054, + 0.193847039275845656900547e-5, + ] + + // ********************************************************** + // ********** Coefficients for erf_inv_impl polynomial ****** + // ********************************************************** + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0, 0.5]. + erf_inv_impl_an = [ + -0.000508781949658280665617, + -0.00836874819741736770379, + 0.0334806625409744615033, + -0.0126926147662974029034, + -0.0365637971411762664006, + 0.0219878681111168899165, + 0.00822687874676915743155, + -0.00538772965071242932965, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0, 0.5]. + erf_inv_impl_ad = [ + 1.0, + -0.970005043303290640362, + -1.56574558234175846809, + 1.56221558398423026363, + 0.662328840472002992063, + -0.71228902341542847553, + -0.0527396382340099713954, + 0.0795283687341571680018, + -0.00233393759374190016776, + 0.000886216390456424707504, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.5, 0.75]. + erf_inv_impl_bn = [ + -0.202433508355938759655, + 0.105264680699391713268, + 8.37050328343119927838, + 17.6447298408374015486, + -18.8510648058714251895, + -44.6382324441786960818, + 17.445385985570866523, + 21.1294655448340526258, + -3.67192254707729348546, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.5, 0.75]. + erf_inv_impl_bd = [ + 1.0, + 6.24264124854247537712, + 3.9713437953343869095, + -28.6608180499800029974, + -20.1432634680485188801, + 48.5609213108739935468, + 10.8268667355460159008, + -22.6436933413139721736, + 1.72114765761200282724, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.75, 1] with x less than 3. + erf_inv_impl_cn = [ + -0.131102781679951906451, + -0.163794047193317060787, + 0.117030156341995252019, + 0.387079738972604337464, + 0.337785538912035898924, + 0.142869534408157156766, + 0.0290157910005329060432, + 0.00214558995388805277169, + -0.679465575181126350155e-6, + 0.285225331782217055858e-7, + -0.681149956853776992068e-9, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.75, 1] with x less than 3. + erf_inv_impl_cd = [ + 1.0, + 3.46625407242567245975, + 5.38168345707006855425, + 4.77846592945843778382, + 2.59301921623620271374, + 0.848854343457902036425, + 0.152264338295331783612, + 0.01105924229346489121, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 3 and 6. + erf_inv_impl_dn = [ + -0.0350353787183177984712, + -0.00222426529213447927281, + 0.0185573306514231072324, + 0.00950804701325919603619, + 0.00187123492819559223345, + 0.000157544617424960554631, + 0.460469890584317994083e-5, + -0.230404776911882601748e-9, + 0.266339227425782031962e-11, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 3 and 6. + erf_inv_impl_dd = [ + 1.0, + 1.3653349817554063097, + 0.762059164553623404043, + 0.220091105764131249824, + 0.0341589143670947727934, + 0.00263861676657015992959, + 0.764675292302794483503e-4, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 6 and 18. + erf_inv_impl_en = [ + -0.0167431005076633737133, + -0.00112951438745580278863, + 0.00105628862152492910091, + 0.000209386317487588078668, + 0.149624783758342370182e-4, + 0.449696789927706453732e-6, + 0.462596163522878599135e-8, + -0.281128735628831791805e-13, + 0.99055709973310326855e-16, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 6 and 18. + erf_inv_impl_ed = [ + 1.0, + 0.591429344886417493481, + 0.138151865749083321638, + 0.0160746087093676504695, + 0.000964011807005165528527, + 0.275335474764726041141e-4, + 0.282243172016108031869e-6, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 18 and 44. + erf_inv_impl_fn = [ + -0.0024978212791898131227, + -0.779190719229053954292e-5, + 0.254723037413027451751e-4, + 0.162397777342510920873e-5, + 0.396341011304801168516e-7, + 0.411632831190944208473e-9, + 0.145596286718675035587e-11, + -0.116765012397184275695e-17, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.75, 1] with x between 18 and 44. + erf_inv_impl_fd = [ + 1.0, + 0.207123112214422517181, + 0.0169410838120975906478, + 0.000690538265622684595676, + 0.145007359818232637924e-4, + 0.144437756628144157666e-6, + 0.509761276599778486139e-9, + ] + + // Polynomial coefficients for a numerator of `erf_inv_impl` + // in the interval [0.75, 1] with x greater than 44. + erf_inv_impl_gn = [ + -0.000539042911019078575891, + -0.28398759004727721098e-6, + 0.899465114892291446442e-6, + 0.229345859265920864296e-7, + 0.225561444863500149219e-9, + 0.947846627503022684216e-12, + 0.135880130108924861008e-14, + -0.348890393399948882918e-21, + ] + + // Polynomial coefficients for a denominator of `erf_inv_impl` + // in the interval [0.75, 1] with x greater than 44. + erf_inv_impl_gd = [ + 1.0, + 0.0845746234001899436914, + 0.00282092984726264681981, + 0.468292921940894236786e-4, + 0.399968812193862100054e-6, + 0.161809290887904476097e-8, + 0.231558608310259605225e-11, + ] +) + +fn erf_inv_impl(p f64, q f64, s f64) f64 { + mut result := 0.0 + if p <= 0.5 { + y := 0.0891314744949340820313 + g := p * (p + 10.0) + r := polynomial(p, math.erf_inv_impl_an) / polynomial(p, math.erf_inv_impl_ad) + result = g * y + g * r + } else if q >= 0.25 { + y := 2.249481201171875 + g := sqrt(-2.0 * log(q)) + xs := q - 0.25 + r := polynomial(xs, math.erf_inv_impl_bn) / polynomial(xs, math.erf_inv_impl_bd) + result = g / (y + r) + } else { + x := sqrt(-log(q)) + if x < 3.0 { + y := 0.807220458984375 + xs := x - 1.125 + r := polynomial(xs, math.erf_inv_impl_cn) / polynomial(xs, math.erf_inv_impl_cd) + result = y * x + r * x + } else if x < 6.0 { + y := 0.93995571136474609375 + xs := x - 3.0 + r := polynomial(xs, math.erf_inv_impl_dn) / polynomial(xs, math.erf_inv_impl_dd) + result = y * x + r * x + } else if x < 18.0 { + y := 0.98362827301025390625 + xs := x - 6.0 + r := polynomial(xs, math.erf_inv_impl_en) / polynomial(xs, math.erf_inv_impl_ed) + result = y * x + r * x + } else if x < 44.0 { + y := 0.99714565277099609375 + xs := x - 18.0 + r := polynomial(xs, math.erf_inv_impl_fn) / polynomial(xs, math.erf_inv_impl_fd) + result = y * x + r * x + } else { + y := 0.99941349029541015625 + xs := x - 44.0 + r := polynomial(xs, math.erf_inv_impl_gn) / polynomial(xs, math.erf_inv_impl_gd) + result = y * x + r * x + } + } + + return s * result +} + +fn erf_impl(z f64, inv bool) f64 { + if z < 0.0 { + if !inv { + return -erf_impl(-z, false) + } + if z < -0.5 { + return 2.0 - erf_impl(-z, true) + } + return 1.0 + erf_impl(-z, false) + } + mut result := 0.0 + if z < 0.5 { + if z < 1e-10 { + result = z * 1.125 + z * 0.003379167095512573896158903121545171688 + } else { + result = z * 1.125 + + z * polynomial(z, math.erf_impl_an) / polynomial(z, math.erf_impl_ad) + } + } else if z < 110.0 { + mut r := 0.0 + mut b := 0.0 + if z < 0.75 { + r = polynomial(z - 0.5, math.erf_impl_bn) / polynomial(z - 0.5, math.erf_impl_bd) + b = 0.3440242112 + } else if z < 1.25 { + r = polynomial(z - 0.75, math.erf_impl_cn) / polynomial(z - 0.75, math.erf_impl_cd) + b = 0.419990927 + } else if z < 2.25 { + r = polynomial(z - 1.25, math.erf_impl_dn) / polynomial(z - 1.25, math.erf_impl_dd) + b = 0.4898625016 + } else if z < 3.5 { + r = polynomial(z - 2.25, math.erf_impl_en) / polynomial(z - 2.25, math.erf_impl_ed) + b = 0.5317370892 + } else if z < 5.25 { + r = polynomial(z - 3.5, math.erf_impl_fn) / polynomial(z - 3.5, math.erf_impl_fd) + b = 0.5489973426 + } else if z < 8.0 { + r = polynomial(z - 5.25, math.erf_impl_gn) / polynomial(z - 5.25, math.erf_impl_gd) + b = 0.5571740866 + } else if z < 11.5 { + r = polynomial(z - 8.0, math.erf_impl_hn) / polynomial(z - 8.0, math.erf_impl_hd) + b = 0.5609807968 + } else if z < 17.0 { + r = polynomial(z - 11.5, math.erf_impl_in) / polynomial(z - 11.5, math.erf_impl_id) + b = 0.5626493692 + } else if z < 24.0 { + r = polynomial(z - 17.0, math.erf_impl_jn) / polynomial(z - 17.0, math.erf_impl_jd) + b = 0.5634598136 + } else if z < 38.0 { + r = polynomial(z - 24.0, math.erf_impl_kn) / polynomial(z - 24.0, math.erf_impl_kd) + b = 0.5638477802 + } else if z < 60.0 { + r = polynomial(z - 38.0, math.erf_impl_ln) / polynomial(z - 38.0, math.erf_impl_ld) + b = 0.5640528202 + } else if z < 85.0 { + r = polynomial(z - 60.0, math.erf_impl_mn) / polynomial(z - 60.0, math.erf_impl_md) + b = 0.5641309023 + } else { + r = polynomial(z - 85.0, math.erf_impl_nn) / polynomial(z - 85.0, math.erf_impl_nd) + b = 0.5641584396 + } + + g := exp(-z * z) / z + result = g * b + g * r + } else { + result = 0.0 + } + if inv && z >= 0.5 { + return result + } else if z >= 0.5 || inv { + return 1.0 - result + } else { + return result + } +} + +/// 'erf' calculates the error function at `x`. +pub fn erf(x f64) f64 { + if is_nan(x) { + return nan() + } else if is_inf(x, 1) { + return 1.0 + } else if is_inf(x, -1) { + return -1.0 + } else if x == 0.0 { + return 0.0 + } else { + return erf_impl(x, false) + } +} + +// `erf_inv` calculates the inverse error function at `x`. +pub fn erf_inv(x f64) f64 { + if x == 0 { + return 0.0 + } else if x >= 1.0 { + return inf(1) + } else if x <= -1.0 { + return inf(-1) + } else if x < 0.0 { + return erf_inv_impl(-x, 1.0 + x, -1.0) + } else { + return erf_inv_impl(x, 1.0 - x, 1.0) + } +} + +// `erfc` calculates the complementary error function at `x`. +pub fn erfc(x f64) f64 { + if is_nan(x) { + return nan() + } else if is_inf(x, 1) { + return 0.0 + } else if is_inf(x, -1) { + return 2.0 + } else { + return erf_impl(x, true) + } +} + +// `erfc_inv` calculates the complementary inverse error function at `x`. +pub fn erfc_inv(x f64) f64 { + if x <= 0.0 { + return inf(1) + } else if x >= 2.0 { + return inf(-1) + } else if is_inf(x, -1) { + return erf_inv_impl(-1.0 + x, 2.0 - x, -1.0) + } else { + return erf_inv_impl(1.0 - x, x, 1.0) + } +} diff --git a/vlib/math/erf_test.v b/vlib/math/erf_test.v new file mode 100644 index 0000000000..00cedb916a --- /dev/null +++ b/vlib/math/erf_test.v @@ -0,0 +1,45 @@ +import math + +fn almost_eq(a f64, b f64, acc f64) bool { + if math.is_inf(a, 1) || math.is_inf(a, -1) || math.is_inf(b, 1) || math.is_inf(b, -1) { + return a == b + } + + if math.is_nan(a) || math.is_nan(b) { + return false + } + + return math.abs(a - b) < acc +} + +fn test_erf() { + assert math.is_nan(math.erf(math.nan())) + assert almost_eq(math.erf(-1.0), -0.8427007888650501, 1e-11) + assert math.erf(0.0) == 0.0 + assert math.erf(1e-15) == 0.0000000000000011283791670955126615773132947717431253912942469337536 + assert math.erf(0.1) == 0.11246291601917208 + assert math.erf(0.3) == 0.32862677677789676 + assert almost_eq(math.erf(0.5), 0.5204998778130465376827466538919645287364515757579637, + 1e-9) + assert math.erf(1.0) == 0.8427007888650501 + assert math.erf(1.5) == 0.966105146259005 + assert math.erf(6.0) == 0.99999999999999997848026328750108688340664960081261537 + assert math.erf(5.0) == 0.99999999999846254020557196514981165651461662110988195 + assert math.erf(4.0) == 0.999999984582742 + assert math.erf(math.inf(1)) == 1.0 + assert math.erf(math.inf(-1)) == -1.0 +} + +fn test_erfc() { + assert almost_eq(math.erfc(-1.0), 1.84270078886505, 1e-11) + assert math.erfc(0.0) == 1.0 + assert math.erfc(0.1) == 0.8875370839808279 + assert math.erfc(0.2) == 0.7772974103342554 +} + +fn test_erfc_inv() { + assert math.erfc_inv(0.0) == math.inf(1) + assert math.erfc_inv(1e-100) == 15.060286697120752 + assert math.erfc_inv(1.0) == 0.0 + assert math.erfc_inv(0.5) == 0.47660913088024937 +} diff --git a/vlib/math/evaluate.v b/vlib/math/evaluate.v new file mode 100644 index 0000000000..5512208b77 --- /dev/null +++ b/vlib/math/evaluate.v @@ -0,0 +1,18 @@ +module math + +// Provides functions that don't have a numerical solution and must +// be solved computationally (e.g. evaluation of a polynomial) + +pub fn polynomial(z f64, coeff []f64) f64 { + n := coeff.len + if n == 0 { + return 0.0 + } + + mut sum := coeff[n - 1] + for i := n - 1; i >= 0; i-- { + sum *= z + sum += coeff[i] + } + return sum +} diff --git a/vlib/math/math.c.v b/vlib/math/math.c.v index 689e648691..5d605d80c7 100644 --- a/vlib/math/math.c.v +++ b/vlib/math/math.c.v @@ -150,18 +150,20 @@ pub fn exp(a f64) f64 { return C.exp(a) } +/* // erf computes the error function value [inline] pub fn erf(a f64) f64 { return C.erf(a) } - +*/ +/* // erfc computes the complementary error function value [inline] pub fn erfc(a f64) f64 { return C.erfc(a) } - +*/ // exp2 returns the base-2 exponential function of a (math.pow(2, a)). [inline] pub fn exp2(a f64) f64 { diff --git a/vlib/math/math.js.v b/vlib/math/math.js.v index 437e8ab057..3c8ce8de92 100644 --- a/vlib/math/math.js.v +++ b/vlib/math/math.js.v @@ -111,25 +111,17 @@ pub fn cosh(a f64) f64 { // exp calculates exponent of the number (math.pow(math.E, a)). [inline] pub fn exp(a f64) f64 { - return JS.Math.exp(a) -} + mut res := 0.0 + #res.val = Math.exp(a) -// erf computes the error function value -[inline] -pub fn erf(a f64) f64 { - return JS.Math.erf(a) -} - -// erfc computes the complementary error function value -[inline] -pub fn erfc(a f64) f64 { - return JS.Math.erfc(a) + return res } // exp2 returns the base-2 exponential function of a (math.pow(2, a)). [inline] pub fn exp2(a f64) f64 { - return JS.Math.exp2(a) + return 0 + // return JS.Math.exp2(a) } // floor returns the nearest f64 lower or equal of the provided value. @@ -140,20 +132,46 @@ pub fn floor(a f64) f64 { // fmod returns the floating-point remainder of number / denom (rounded towards zero): [inline] -pub fn fmod(a f64, b f64) f64 { - return JS.Math.fmod(a, b) +pub fn fmod(x f64, y f64) f64 { + #let tmp + #let tmp2 + #let p = 0 + #let pY = 0 + #let l = 0.0 + #let l2 = 0.0 + #tmp = x.toExponential().match(/^.\.?(.*)e(.+)$/) + #p = parseInt(tmp[2], 10) - (tmp[1] + '').length + #tmp = y.toExponential().match(/^.\.?(.*)e(.+)$/) + #pY = parseInt(tmp[2], 10) - (tmp[1] + '').length + #if (pY > p) { + #p = pY + #} + #tmp2 = (x % y) + #if (p < -100 || p > 20) { + // toFixed will give an out of bound error so we fix it like this: + #l = Math.round(Math.log(tmp2) / Math.log(10)) + #l2 = Math.pow(10, l) + #return new builtin.f64((tmp2 / l2).toFixed(l - p) * l2) + #} else { + #return new builtin.f64(parseFloat(tmp2.toFixed(-p))) + #} + + return 0.0 + // return JS.Math.fmod(a, b) } // gamma computes the gamma function value [inline] pub fn gamma(a f64) f64 { - return JS.Math.tgamma(a) + return 0 + // return JS.Math.tgamma(a) } // Returns hypotenuse of a right triangle. [inline] pub fn hypot(a f64, b f64) f64 { - return JS.Math.hypot(a, b) + return 0 + // return JS.Math.hypot(a, b) } // log calculates natural (base-e) logarithm of the provided value. @@ -165,19 +183,22 @@ pub fn log(a f64) f64 { // log2 calculates base-2 logarithm of the provided value. [inline] pub fn log2(a f64) f64 { - return JS.Math.log2(a) + return 0 + // return JS.Math.log2(a) } // log10 calculates the common (base-10) logarithm of the provided value. [inline] pub fn log10(a f64) f64 { - return JS.Math.log10(a) + return 0.0 + // return JS.Math.log10(a) } // log_gamma computes the log-gamma function value [inline] pub fn log_gamma(a f64) f64 { - return JS.Math.lgamma(a) + return 0 + // return JS.Math.lgamma(a) } // log_n calculates base-N logarithm of the provided value. diff --git a/vlib/v/gen/js/builtin_types.v b/vlib/v/gen/js/builtin_types.v index e9ce2fadaa..80a96a30aa 100644 --- a/vlib/v/gen/js/builtin_types.v +++ b/vlib/v/gen/js/builtin_types.v @@ -348,6 +348,7 @@ fn (mut g JsGen) gen_builtin_type_defs() { 'f32', 'f64', 'float_literal' { g.gen_builtin_prototype( typ_name: typ_name + constructor: 'this.val = +val' default_value: 'new Number(0)' to_jsval: '+this' ) diff --git a/vlib/v/gen/js/js.v b/vlib/v/gen/js/js.v index f727a15792..58d128e111 100644 --- a/vlib/v/gen/js/js.v +++ b/vlib/v/gen/js/js.v @@ -1921,7 +1921,18 @@ fn (mut g JsGen) gen_infix_expr(it ast.InfixExpr) { } return } - if it.op == .eq || it.op == .ne { + if it.op == .logical_or || it.op == .and { + if g.ns.name == 'builtin' { + g.write('new ') + } + g.write('bool(') + g.expr(it.left) + g.write('.valueOf()') + g.write(it.op.str()) + g.expr(it.right) + g.write('.valueOf()') + g.write(')') + } else if it.op == .eq || it.op == .ne { has_operator_overloading := g.table.type_has_method(l_sym, '==') if has_operator_overloading { g.expr(it.left) @@ -2063,10 +2074,12 @@ fn (mut g JsGen) gen_infix_expr(it ast.InfixExpr) { g.expr(it.left) g.gen_deref_ptr(it.left_type) + // g.write('.val') g.write(' $it.op ') g.expr(it.right) g.gen_deref_ptr(it.right_type) + // g.write('.val') if is_arithmetic { g.cast_stack.delete_last()