1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: add some benchmark tests (#12142)

This commit is contained in:
Ulises Jeremias Cornejo Fandos 2021-10-11 08:20:07 -03:00 committed by GitHub
parent 3e02cfd528
commit 35b301f73c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 546 additions and 49 deletions

View File

@ -1,33 +0,0 @@
module math
fn C.acos(x f64) f64
fn C.asin(x f64) f64
fn C.atan(x f64) f64
fn C.atan2(y f64, x f64) f64
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return C.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return C.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return C.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
return C.atan2(a, b)
}

546
vlib/math/math_bench_test.v Normal file
View File

@ -0,0 +1,546 @@
module math
import benchmark
const max_iter = 1000
fn test_benchmark_acos() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = acos(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_acosh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = acosh(1.5)
}
bmark.measure(@FN)
}
fn test_benchmark_asin() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = asin(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_asinh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = asinh(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_atan() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = atan(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_atanh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = atanh(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_atan2() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = atan2(0.5, 1)
}
bmark.measure(@FN)
}
fn test_benchmark_cbrt() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = cbrt(10)
}
bmark.measure(@FN)
}
fn test_benchmark_ceil() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = ceil(0.5)
}
bmark.measure(@FN)
}
const copysign_neg = -1.0
fn test_benchmark_copysign() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = copysign(0.5, math.copysign_neg)
}
bmark.measure(@FN)
}
fn test_benchmark_cos() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = cos(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_cosh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = cosh(2.5)
}
bmark.measure(@FN)
}
fn test_benchmark_erf() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = erf(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_erfc() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = erfc(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_exp() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = exp(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_expm1() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = expm1(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_exp2() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = exp2(0.5)
}
bmark.measure(@FN)
}
const abs_pos = 0.5
fn test_benchmark_abs() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = abs(math.abs_pos)
}
bmark.measure(@FN)
}
fn test_benchmark_floor() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = floor(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_max() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = max(10, 3)
}
bmark.measure(@FN)
}
fn test_benchmark_min() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = min(10, 3)
}
bmark.measure(@FN)
}
fn test_benchmark_mod() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = mod(10, 3)
}
bmark.measure(@FN)
}
fn test_benchmark_frexp() {
mut x := 0.0
mut y := 0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x, y = frexp(8)
}
bmark.measure(@FN)
}
fn test_benchmark_gamma() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = gamma(2.5)
}
bmark.measure(@FN)
}
fn test_benchmark_hypot() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = hypot(3, 4)
}
bmark.measure(@FN)
}
fn test_benchmark_ldexp() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = ldexp(0.5, 2)
}
bmark.measure(@FN)
}
fn test_benchmark_log_gamma() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log_gamma(2.5)
}
bmark.measure(@FN)
}
fn test_benchmark_log() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_log_b() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log_b(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_log1p() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log1p(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_log10() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log10(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_log2() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = log2(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_modf() {
mut x := 0.0
mut y := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x, y = modf(1.5)
}
bmark.measure(@FN)
}
fn test_benchmark_nextafter32() {
mut x := f32(0.0)
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = nextafter32(0.5, 1)
}
bmark.measure(@FN)
}
fn test_benchmark_nextafter64() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = nextafter(0.5, 1)
}
bmark.measure(@FN)
}
fn test_benchmark_pow_int() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = pow(2, 2)
}
bmark.measure(@FN)
}
fn test_benchmark_pow_frac() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = pow(2.5, 1.5)
}
bmark.measure(@FN)
}
const pow10pos = int(300)
fn test_benchmark_pow10_pos() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = pow10(math.pow10pos)
}
bmark.measure(@FN)
}
const pow10neg = int(-300)
fn test_benchmark_pow10_neg() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = pow10(math.pow10neg)
}
bmark.measure(@FN)
}
const round_neg = f64(-2.5)
fn test_benchmark_round() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = round(math.round_neg)
}
bmark.measure(@FN)
}
fn test_benchmark_round_to_even() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = round_to_even(math.round_neg)
}
bmark.measure(@FN)
}
const signbit_pos = 2.5
fn test_benchmark_signbit() {
mut x := false
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = signbit(math.signbit_pos)
}
bmark.measure(@FN)
}
fn test_benchmark_sin() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = sin(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_sincos() {
mut x := 0.0
mut y := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x, y = sincos(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_sinh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = sinh(2.5)
}
bmark.measure(@FN)
}
fn test_benchmark_sqrt_indirect() {
mut x, y := 0.0, 10.0
f := sqrt
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x += f(y)
}
bmark.measure(@FN)
}
fn test_benchmark_sqrt_latency() {
mut x := 10.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = sqrt(x)
}
bmark.measure(@FN)
}
fn test_benchmark_sqrt_indirect_latency() {
mut x := 10.0
f := sqrt
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = f(x)
}
bmark.measure(@FN)
}
fn is_prime(i int) bool {
// yes, this is a dumb way to write this code,
// but calling sqrt repeatedly in this way demonstrates
// the benefit of using a direct sqrt instruction on systems
// that have one, whereas the obvious loop seems not to
// demonstrate such a benefit.
for j := 2; f64(j) <= sqrt(f64(i)); j++ {
if i % j == 0 {
return false
}
}
return true
}
fn test_benchmark_sqrt_prime() {
mut x := false
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = is_prime(100003)
}
bmark.measure(@FN)
}
fn test_benchmark_tan() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = tan(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_tanh() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = tanh(2.5)
}
bmark.measure(@FN)
}
fn test_benchmark_trunc() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = trunc(0.5)
}
bmark.measure(@FN)
}
fn test_benchmark_f64_bits() {
mut y := u64(0)
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
y = f64_bits(math.round_neg)
}
bmark.measure(@FN)
}
const round_u64 = u64(5)
fn test_benchmark_f64_from_bits() {
mut x := 0.0
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = f64_from_bits(math.round_u64)
}
bmark.measure(@FN)
}
const round_f32 = f32(-2.5)
fn test_benchmark_f32_bits() {
mut y := u32(0)
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
y = f32_bits(math.round_f32)
}
bmark.measure(@FN)
}
const round_u32 = u32(5)
fn test_benchmark_f32_from_bits() {
mut x := f32(0.0)
mut bmark := benchmark.start()
for i in 0 .. math.max_iter {
x = f32_from_bits(math.round_u32)
}
bmark.measure(@FN)
}

View File

@ -1,31 +1,15 @@
module math
fn C.cos(x f64) f64
fn C.cosf(x f32) f32
fn C.sin(x f64) f64
fn C.sinf(x f32) f32
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return C.cos(a)
}
// cosf calculates cosine. (float32)
[inline]
pub fn cosf(a f32) f32 {
return C.cosf(a)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return C.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {