1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

bigint: division (#11386)

This commit is contained in:
Vincent Laisney 2021-09-08 13:16:35 +02:00 committed by GitHub
parent 56ad5d72ef
commit 43fae5de74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 302 additions and 53 deletions

View File

@ -202,7 +202,7 @@ fn divide_digit_array(operand_a []u32, operand_b []u32, mut quotient []u32, mut
} }
// Performs division on the non-negative dividend in a by the single digit divisor b. It assumes // Performs division on the non-negative dividend in a by the single digit divisor b. It assumes
// quotient and remainder are empty zero length arrays with sufficient capacity // quotient and remainder are empty zero length arrays without previous allocation
fn divide_array_by_digit(operand_a []u32, divisor u32, mut quotient []u32, mut remainder []u32) { fn divide_array_by_digit(operand_a []u32, divisor u32, mut quotient []u32, mut remainder []u32) {
if operand_a.len == 1 { if operand_a.len == 1 {
// 1 digit for both dividend and divisor // 1 digit for both dividend and divisor
@ -240,58 +240,6 @@ fn divide_array_by_digit(operand_a []u32, divisor u32, mut quotient []u32, mut r
} }
} }
// Performs division on the non-negative dividend in a by the multi digit divisor b. It assumes
// quotient and remainder are empty zero length arrays with sufficient capacity
// This is different from divide_digit_array because it depends on this very function
// after making sure that the divisor is indeed multi-digit.
fn divide_array_by_array(operand_a []u32, operand_b []u32, mut quotient []u32, mut remainder []u32) {
for index in 0 .. operand_a.len {
remainder << operand_a[index]
}
for _ in 0 .. operand_b.len {
quotient << 0
}
offset := operand_a.len - operand_b.len
divisor_last_index := operand_b.len - 1
for index := offset; index >= 0; index-- {
dividend_last_index := divisor_last_index + index
value_upper := if remainder.len > dividend_last_index + 1 {
u64(remainder[dividend_last_index + 1])
} else {
u64(0)
}
value_lower := if remainder.len > dividend_last_index {
u64(remainder[dividend_last_index])
} else {
u64(0)
}
partial := value_lower + (value_upper << 32)
mut q := u32(partial / operand_b[divisor_last_index])
if q > 0 {
mut modified_divisor := []u32{len: operand_b.len + index, init: 0}
for i in 0 .. operand_b.len {
modified_divisor[index + i] = operand_b[i]
}
mut product := []u32{len: operand_b.len + 1, init: 0}
multiply_array_by_digit(modified_divisor, q, mut product)
for q > 0 && compare_digit_array(product, remainder) > 0 {
q--
subtract_digit_array(product, modified_divisor, mut product)
}
subtract_digit_array(remainder, product, mut remainder)
}
quotient[index] = q
}
// Remove leading zeros from quotient and remainder
for quotient.len > 0 && quotient.last() == 0 {
quotient.delete_last()
}
for remainder.len > 0 && remainder.last() == 0 {
remainder.delete_last()
}
}
// Shifts the contents of the original array by the given amount of bits to the left. // Shifts the contents of the original array by the given amount of bits to the left.
// This function assumes that the amount is less than 32. The storage is expected to // This function assumes that the amount is less than 32. The storage is expected to
// allocated with zeroes. // allocated with zeroes.

View File

@ -0,0 +1,139 @@
module big
import math.bits
// suppose operand_a bigger than operand_b and both not null.
// Both quotient and remaider are allocated but of length 0
fn divide_array_by_array(operand_a []u32, operand_b []u32, mut quotient []u32, mut remainder []u32) {
for index in 0 .. operand_a.len {
remainder << operand_a[index]
}
len_diff := operand_a.len - operand_b.len
assert len_diff >= 0
// we must do in place shift and operations.
mut divisor := []u32{cap: operand_b.len}
for _ in 0 .. len_diff {
divisor << u32(0)
}
for index in 0 .. operand_b.len {
divisor << operand_b[index]
}
for _ in 0 .. len_diff + 1 {
quotient << u32(0)
}
lead_zer_remainder := u32(bits.leading_zeros_32(remainder.last()))
lead_zer_divisor := u32(bits.leading_zeros_32(divisor.last()))
bit_offset := (u32(32) * u32(len_diff)) + (lead_zer_divisor - lead_zer_remainder)
// align
if lead_zer_remainder < lead_zer_divisor {
lshift_in_place(mut divisor, lead_zer_divisor - lead_zer_remainder)
} else if lead_zer_remainder > lead_zer_divisor {
lshift_in_place(mut remainder, lead_zer_remainder - lead_zer_divisor)
}
assert left_align_p(divisor[divisor.len - 1], remainder[remainder.len - 1])
for bit_idx := int(bit_offset); bit_idx >= 0; bit_idx-- {
if greater_equal_from_end(remainder, divisor) {
bit_set(mut quotient, bit_idx)
subtract_in_place(mut remainder, divisor)
}
rshift_in_place(mut divisor, 1)
}
// ajust
if lead_zer_remainder > lead_zer_divisor {
// rshift_in_place(mut quotient, lead_zer_remainder - lead_zer_divisor)
rshift_in_place(mut remainder, lead_zer_remainder - lead_zer_divisor)
}
for remainder.len > 0 && remainder.last() == 0 {
remainder.delete_last()
}
for quotient.len > 0 && quotient.last() == 0 {
quotient.delete_last()
}
}
// help routines for cleaner code but inline for performance
// quicker than BitField.set_bit
[inline]
fn bit_set(mut a []u32, n int) {
byte_offset := n / 32
mask := u32(1) << u32(n % 32)
assert a.len >= byte_offset
a[byte_offset] |= mask
}
// a.len is greater or equal to b.len
// returns true if a >= b (completed with zeroes)
[inline]
fn greater_equal_from_end(a []u32, b []u32) bool {
assert a.len >= b.len
offset := a.len - b.len
for index := a.len - 1; index >= offset; index-- {
if a[index] > b[index - offset] {
return true
} else if a[index] < b[index - offset] {
return false
}
}
return true
}
// logical left shift
// there is no overflow. We know that the last bits are zero
// and that n <= 32
[inline]
fn lshift_in_place(mut a []u32, n u32) {
mut carry := u32(0)
mut prec_carry := u32(0)
mask := ((u32(1) << n) - 1) << (32 - n)
for index in 0 .. a.len {
prec_carry = carry >> (32 - n)
carry = a[index] & mask
a[index] <<= n
a[index] |= prec_carry
}
}
// logical right shift without control because these digits have already been
// shift left before
[inline]
fn rshift_in_place(mut a []u32, n u32) {
mut carry := u32(0)
mut prec_carry := u32(0)
mask := u32((1 << n) - 1)
for index := a.len - 1; index >= 0; index-- {
carry = a[index] & mask
a[index] >>= n
a[index] |= prec_carry << (32 - n)
prec_carry = carry
}
}
// a := a - b supposed a >= b
[inline]
fn subtract_in_place(mut a []u32, b []u32) {
mut carry := u32(0)
mut new_carry := u32(0)
offset := a.len - b.len
for index := a.len - b.len; index < a.len; index++ {
if a[index] < (b[index - offset] + carry) {
new_carry = 1
} else {
new_carry = 0
}
a[index] -= (b[index - offset] + carry)
carry = new_carry
}
assert carry == 0
}
// for assert
[inline]
fn left_align_p(a u32, b u32) bool {
return bits.leading_zeros_32(a) == bits.leading_zeros_32(b)
}

View File

@ -0,0 +1,162 @@
module big
import rand
fn test_lshift_in_place() {
mut a := [u32(1), 1, 1, 1, 1]
lshift_in_place(mut a, 1)
assert a == [u32(2), 2, 2, 2, 2]
lshift_in_place(mut a, 7)
assert a == [u32(256), 256, 256, 256, 256]
mut b := [u32(0x80000001), 0xc0000000, 0x80000000, 0x7fffffff]
lshift_in_place(mut b, 1)
assert b == [u32(2), 0x80000001, 1, 0xffffffff]
mut c := [u32(0x00ffffff), 0xf0f0f0f0, 1, 0x3fffffff, 1]
lshift_in_place(mut c, 2)
assert c == [u32(0x3fffffc), 0xc3c3c3c0, 7, 0xfffffffc, 4]
}
fn test_rshift_in_place() {
mut a := [u32(2), 2, 2, 2, 2]
rshift_in_place(mut a, 1)
assert a == [u32(1), 1, 1, 1, 1]
a = [u32(256), 256, 256, 256, 256]
rshift_in_place(mut a, 7)
assert a == [u32(2), 2, 2, 2, 2]
a = [u32(0), 0, 1]
rshift_in_place(mut a, 1)
assert a == [u32(0), 0x80000000, 0]
mut b := [u32(3), 0x80000001, 1, 0xffffffff]
rshift_in_place(mut b, 1)
assert b == [u32(0x80000001), 0xc0000000, 0x80000000, 0x7fffffff]
mut c := [u32(0x03ffffff), 0xc3c3c3c0, 7, 0xfffffffc, 4]
rshift_in_place(mut c, 2)
assert c == [u32(0x00ffffff), 0xf0f0f0f0, 1, 0x3fffffff, 1]
}
fn test_subtract_in_place() {
mut a := [u32(2), 2, 2, 2, 2]
mut b := [u32(1), 1, 2, 1, 1]
subtract_in_place(mut a, b)
assert a == [u32(1), 1, 0, 1, 1]
a = [u32(0), 0, 0, 0, 1]
b = [u32(0), 0, 1]
subtract_in_place(mut a, b)
assert a == [u32(0), 0, 0, 0, 0]
a = [u32(0), 0, 0, 0, 1, 13]
b = [u32(1), 0, 1]
mut c := []u32{len: a.len}
mut d := [u32(0), 0, 0]
d << b // to have same length
subtract_digit_array(a, d, mut c)
subtract_in_place(mut a, b)
assert a == [u32(0), 0, 0, u32(-1), 0, 12]
assert c == a
}
fn test_greater_equal_from_end() {
mut a := [u32(1), 2, 3, 4, 5, 6]
mut b := [u32(3), 4, 5, 6]
assert greater_equal_from_end(a, b) == true
a = [u32(1), 2, 3, 4, 5, 6]
b = [u32(1), 2, 3, 4, 5, 6]
assert greater_equal_from_end(a, b) == true
a = [u32(1), 2, 3, 4, 5, 6]
b = [u32(2), 2, 3, 4, 5, 6]
assert greater_equal_from_end(a, b) == false
a = [u32(0), 0, 0, 4, 5, 6]
b = [u32(4), 5, 6]
assert greater_equal_from_end(a, b) == true
a = [u32(0), 0, 0, 4, 5, 6]
b = [u32(4), 6, 6]
assert greater_equal_from_end(a, b) == false
a = [u32(0), 0, 0, 4, 5, 5]
b = [u32(4), 5, 6]
assert greater_equal_from_end(a, b) == false
}
fn test_divide_digit_array_03() {
a := [u32(0), 4]
b := [u32(0), 1]
mut q := []u32{cap: a.len - b.len + 1}
mut r := []u32{cap: a.len}
divide_digit_array(a, b, mut q, mut r)
assert q == [u32(4)]
assert r == []u32{len: 0}
}
fn test_divide_digit_array_04() {
a := [u32(2), 4]
b := [u32(0), 1]
mut q := []u32{cap: a.len - b.len + 1}
mut r := []u32{cap: a.len}
divide_digit_array(a, b, mut q, mut r)
assert q == [u32(4)]
assert r == [u32(2)]
}
fn test_divide_digit_array_05() {
a := [u32(2), 4, 5]
b := [u32(0), 1]
mut q := []u32{cap: a.len - b.len + 1}
mut r := []u32{cap: a.len}
divide_digit_array(a, b, mut q, mut r)
assert q == [u32(4), 5]
assert r == [u32(2)]
}
fn test_divide_digit_array_06() {
a := [u32(2), 4, 5, 3]
b := [u32(0), 0x8000]
mut q := []u32{cap: a.len - b.len + 1}
mut r := []u32{cap: a.len}
divide_digit_array(a, b, mut q, mut r)
assert q == [u32(0xa0000), 0x60000]
assert r == [u32(2), 4]
}
// For debugging
fn integer_from_u32_array(a []u32) Integer {
mut res := integer_from_i64(0)
mut multiplicand := integer_from_u32(1)
for i in 0 .. a.len {
res += integer_from_u32(a[i]) * multiplicand
multiplicand = multiplicand.lshift(32)
}
return res
}
fn test_many_divisions() {
for _ in 0 .. 100 {
a := random_number(30)
b := random_number(30)
c := a * b
assert c / a == b
assert c / b == a
q, r := a.div_mod(b)
assert (q * b) + r == a
}
}
fn random_number(length int) Integer {
numbers := '0123456789'
mut stri := ''
for _ in 0 .. length {
i := rand.intn(10)
nr := numbers[i]
stri = stri + nr.ascii_str()
}
res := integer_from_string(stri) or { panic('error in random_number') }
return res
}