From 7b4c3ec618e431af0609b87cfd2486cb041a6202 Mon Sep 17 00:00:00 2001 From: Archan Patkar Date: Tue, 23 Jul 2019 17:05:44 +0530 Subject: [PATCH] math/complex: restructuring cmath as a submodule of math --- vlib/{cmath => math/complex}/complex.v | 2 +- vlib/{cmath => math}/complex_test.v | 569 +++++++++++++------------ 2 files changed, 290 insertions(+), 281 deletions(-) rename vlib/{cmath => math/complex}/complex.v (99%) rename vlib/{cmath => math}/complex_test.v (64%) diff --git a/vlib/cmath/complex.v b/vlib/math/complex/complex.v similarity index 99% rename from vlib/cmath/complex.v rename to vlib/math/complex/complex.v index adcedc3d0d..b35f3c5cf4 100644 --- a/vlib/cmath/complex.v +++ b/vlib/math/complex/complex.v @@ -2,7 +2,7 @@ // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. -module cmath +module complex import math diff --git a/vlib/cmath/complex_test.v b/vlib/math/complex_test.v similarity index 64% rename from vlib/cmath/complex_test.v rename to vlib/math/complex_test.v index 43a698a5cb..c42fcc4f96 100644 --- a/vlib/cmath/complex_test.v +++ b/vlib/math/complex_test.v @@ -1,129 +1,138 @@ -import math -import cmath - -// Tests are based on and verified from practice examples of Khan Academy -// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers +import math +import math.complex as cmplx fn test_complex_addition() { - mut c1 := cmath.complex(0,-10) - mut c2 := cmath.complex(-40,8) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c1 := cmplx.complex(0,-10) + mut c2 := cmplx.complex(-40,8) mut result := c1 + c2 - assert result.equals(cmath.complex(-40,-2)) - c1 = cmath.complex(-71,2) - c2 = cmath.complex(88,-12) + assert result.equals(cmplx.complex(-40,-2)) + c1 = cmplx.complex(-71,2) + c2 = cmplx.complex(88,-12) result = c1 + c2 - assert result.equals(cmath.complex(17,-10)) - c1 = cmath.complex(0,-30) - c2 = cmath.complex(52,-30) + assert result.equals(cmplx.complex(17,-10)) + c1 = cmplx.complex(0,-30) + c2 = cmplx.complex(52,-30) result = c1 + c2 - assert result.equals(cmath.complex(52,-60)) - c1 = cmath.complex(12,-9) - c2 = cmath.complex(32,-6) + assert result.equals(cmplx.complex(52,-60)) + c1 = cmplx.complex(12,-9) + c2 = cmplx.complex(32,-6) result = c1 + c2 - assert result.equals(cmath.complex(44,-15)) + assert result.equals(cmplx.complex(44,-15)) } fn test_complex_subtraction() { - mut c1 := cmath.complex(-8,0) - mut c2 := cmath.complex(6,30) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c1 := cmplx.complex(-8,0) + mut c2 := cmplx.complex(6,30) mut result := c1 - c2 - assert result.equals(cmath.complex(-14,-30)) - c1 = cmath.complex(-19,7) - c2 = cmath.complex(29,32) + assert result.equals(cmplx.complex(-14,-30)) + c1 = cmplx.complex(-19,7) + c2 = cmplx.complex(29,32) result = c1 - c2 - assert result.equals(cmath.complex(-48,-25)) - c1 = cmath.complex(12,0) - c2 = cmath.complex(23,13) + assert result.equals(cmplx.complex(-48,-25)) + c1 = cmplx.complex(12,0) + c2 = cmplx.complex(23,13) result = c1 - c2 - assert result.equals(cmath.complex(-11,-13)) - c1 = cmath.complex(-14,3) - c2 = cmath.complex(0,14) + assert result.equals(cmplx.complex(-11,-13)) + c1 = cmplx.complex(-14,3) + c2 = cmplx.complex(0,14) result = c1 - c2 - assert result.equals(cmath.complex(-14,-11)) + assert result.equals(cmplx.complex(-14,-11)) } fn test_complex_multiplication() { - mut c1 := cmath.complex(1,2) - mut c2 := cmath.complex(1,-4) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c1 := cmplx.complex(1,2) + mut c2 := cmplx.complex(1,-4) mut result := c1.multiply(c2) - assert result.equals(cmath.complex(9,-2)) - c1 = cmath.complex(-4,-4) - c2 = cmath.complex(-5,-3) + assert result.equals(cmplx.complex(9,-2)) + c1 = cmplx.complex(-4,-4) + c2 = cmplx.complex(-5,-3) result = c1.multiply(c2) - assert result.equals(cmath.complex(8,32)) - c1 = cmath.complex(4,4) - c2 = cmath.complex(-2,-5) + assert result.equals(cmplx.complex(8,32)) + c1 = cmplx.complex(4,4) + c2 = cmplx.complex(-2,-5) result = c1.multiply(c2) - assert result.equals(cmath.complex(12,-28)) - c1 = cmath.complex(2,-2) - c2 = cmath.complex(4,-4) + assert result.equals(cmplx.complex(12,-28)) + c1 = cmplx.complex(2,-2) + c2 = cmplx.complex(4,-4) result = c1.multiply(c2) - assert result.equals(cmath.complex(0,-16)) + assert result.equals(cmplx.complex(0,-16)) } fn test_complex_division() { - mut c1 := cmath.complex(-9,-6) - mut c2 := cmath.complex(-3,-2) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c1 := cmplx.complex(-9,-6) + mut c2 := cmplx.complex(-3,-2) mut result := c1.divide(c2) - assert result.equals(cmath.complex(3,0)) - c1 = cmath.complex(-23,11) - c2 = cmath.complex(5,1) + assert result.equals(cmplx.complex(3,0)) + c1 = cmplx.complex(-23,11) + c2 = cmplx.complex(5,1) result = c1.divide(c2) - assert result.equals(cmath.complex(-4,3)) - c1 = cmath.complex(8,-2) - c2 = cmath.complex(-4,1) + assert result.equals(cmplx.complex(-4,3)) + c1 = cmplx.complex(8,-2) + c2 = cmplx.complex(-4,1) result = c1.divide(c2) - assert result.equals(cmath.complex(-2,0)) - c1 = cmath.complex(11,24) - c2 = cmath.complex(-4,-1) + assert result.equals(cmplx.complex(-2,0)) + c1 = cmplx.complex(11,24) + c2 = cmplx.complex(-4,-1) result = c1.divide(c2) - assert result.equals(cmath.complex(-4,-5)) + assert result.equals(cmplx.complex(-4,-5)) } fn test_complex_conjugate() { - mut c1 := cmath.complex(0,8) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c1 := cmplx.complex(0,8) mut result := c1.conjugate() - assert result.equals(cmath.complex(0,-8)) - c1 = cmath.complex(7,3) + assert result.equals(cmplx.complex(0,-8)) + c1 = cmplx.complex(7,3) result = c1.conjugate() - assert result.equals(cmath.complex(7,-3)) - c1 = cmath.complex(2,2) + assert result.equals(cmplx.complex(7,-3)) + c1 = cmplx.complex(2,2) result = c1.conjugate() - assert result.equals(cmath.complex(2,-2)) - c1 = cmath.complex(7,0) + assert result.equals(cmplx.complex(2,-2)) + c1 = cmplx.complex(7,0) result = c1.conjugate() - assert result.equals(cmath.complex(7,0)) + assert result.equals(cmplx.complex(7,0)) } fn test_complex_equals() { - mut c1 := cmath.complex(0,8) - mut c2 := cmath.complex(0,8) + mut c1 := cmplx.complex(0,8) + mut c2 := cmplx.complex(0,8) assert c1.equals(c2) - c1 = cmath.complex(-3,19) - c2 = cmath.complex(-3,19) + c1 = cmplx.complex(-3,19) + c2 = cmplx.complex(-3,19) assert c1.equals(c2) } fn test_complex_abs() { - mut c1 := cmath.complex(3,4) + mut c1 := cmplx.complex(3,4) assert c1.abs() == 5 - c1 = cmath.complex(1,2) + c1 = cmplx.complex(1,2) assert c1.abs() == math.sqrt(5) assert c1.abs() == c1.conjugate().abs() - c1 = cmath.complex(7,0) + c1 = cmplx.complex(7,0) assert c1.abs() == 7 } fn test_complex_angle(){ - mut c := cmath.complex(1, 0) + // Test is based on and verified from practice examples of Khan Academy + // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers + mut c := cmplx.complex(1, 0) assert c.angle() * 180 / math.Pi == 0 - c = cmath.complex(1, 1) + c = cmplx.complex(1, 1) assert c.angle() * 180 / math.Pi == 45 - c = cmath.complex(0, 1) + c = cmplx.complex(0, 1) assert c.angle() * 180 / math.Pi == 90 - c = cmath.complex(-1, 1) + c = cmplx.complex(-1, 1) assert c.angle() * 180 / math.Pi == 135 - c = cmath.complex(-1, -1) + c = cmplx.complex(-1, -1) assert c.angle() * 180 / math.Pi == -135 mut cc := c.conjugate() assert cc.angle() + c.angle() == 0 @@ -132,47 +141,47 @@ fn test_complex_angle(){ fn test_complex_addinv() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-5,-7) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-5,-7) mut result := c1.addinv() assert result.equals(c2) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(3,-4) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(3,-4) result = c1.addinv() assert result.equals(c2) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(1,2) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(1,2) result = c1.addinv() assert result.equals(c2) } fn test_complex_mulinv() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.067568,-0.094595) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.067568,-0.094595) mut result := c1.mulinv() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.12,-0.16) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.12,-0.16) result = c1.mulinv() assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.2,0.4) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.2,0.4) result = c1.mulinv() assert result.equals(c2) } fn test_complex_mod() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) + mut c1 := cmplx.complex(5,7) mut result := c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('8.602325') - c1 = cmath.complex(-3,4) + c1 = cmplx.complex(-3,4) result = c1.mod() assert result == 5 - c1 = cmath.complex(-1,-2) + c1 = cmplx.complex(-1,-2) result = c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('2.236068') @@ -180,18 +189,18 @@ fn test_complex_mod() { fn test_complex_pow() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-24.0,70.0) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-24.0,70.0) mut result := c1.pow(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(117,44) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(117,44) result = c1.pow(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-7,-24) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-7,-24) result = c1.pow(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -199,18 +208,18 @@ fn test_complex_pow() { fn test_complex_root() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(2.607904,1.342074) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(2.607904,1.342074) mut result := c1.root(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(1.264953,1.150614) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(1.264953,1.150614) result = c1.root(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(1.068059,-0.595482) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(1.068059,-0.595482) result = c1.root(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -218,18 +227,18 @@ fn test_complex_root() { fn test_complex_exp() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(111.889015,97.505457) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(111.889015,97.505457) mut result := c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.032543,-0.037679) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.032543,-0.037679) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.153092,-0.334512) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.153092,-0.334512) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -237,18 +246,18 @@ fn test_complex_exp() { fn test_complex_ln() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(2.152033,0.950547) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(2.152033,0.950547) mut result := c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(1.609438,2.214297) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(1.609438,2.214297) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(0.804719,-2.034444) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(0.804719,-2.034444) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -256,18 +265,18 @@ fn test_complex_ln() { fn test_complex_arg() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(2.152033,0.950547) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(2.152033,0.950547) mut result := c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('0.950547') - c1 = cmath.complex(-3,4) - c2 = cmath.complex(1.609438,2.214297) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(1.609438,2.214297) result = c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('2.214297') - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(0.804719,-2.034444) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(0.804719,-2.034444) result = c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('-2.034444') @@ -275,21 +284,21 @@ fn test_complex_arg() { fn test_complex_log() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut b1 := cmath.complex(-6,-2) - mut c2 := cmath.complex(0.232873,-1.413175) + mut c1 := cmplx.complex(5,7) + mut b1 := cmplx.complex(-6,-2) + mut c2 := cmplx.complex(0.232873,-1.413175) mut result := c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - b1 = cmath.complex(3,-1) - c2 = cmath.complex(0.152198,-0.409312) + c1 = cmplx.complex(-3,4) + b1 = cmplx.complex(3,-1) + c2 = cmplx.complex(0.152198,-0.409312) result = c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - b1 = cmath.complex(0,9) - c2 = cmath.complex(-0.298243,1.197981) + c1 = cmplx.complex(-1,-2) + b1 = cmplx.complex(0,9) + c2 = cmplx.complex(-0.298243,1.197981) result = c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -297,21 +306,21 @@ fn test_complex_log() { fn test_complex_cpow() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut r1 := cmath.complex(2,2) - mut c2 := cmath.complex(11.022341,-0.861785) + mut c1 := cmplx.complex(5,7) + mut r1 := cmplx.complex(2,2) + mut c2 := cmplx.complex(11.022341,-0.861785) mut result := c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - r1 = cmath.complex(-4,-2) - c2 = cmath.complex(0.118303,0.063148) + c1 = cmplx.complex(-3,4) + r1 = cmplx.complex(-4,-2) + c2 = cmplx.complex(0.118303,0.063148) result = c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - r1 = cmath.complex(8,-9) - c2 = cmath.complex(-0.000000,0.000007) + c1 = cmplx.complex(-1,-2) + r1 = cmplx.complex(8,-9) + c2 = cmplx.complex(-0.000000,0.000007) result = c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -319,18 +328,18 @@ fn test_complex_cpow() { fn test_complex_sin() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-525.794515,155.536550) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-525.794515,155.536550) mut result := c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-3.853738,-27.016813) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-3.853738,-27.016813) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-3.165779,-1.959601) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-3.165779,-1.959601) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -338,18 +347,18 @@ fn test_complex_sin() { fn test_complex_cos() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(155.536809,525.793641) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(155.536809,525.793641) mut result := c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-27.034946,3.851153) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-27.034946,3.851153) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(2.032723,-3.051898) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(2.032723,-3.051898) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -357,18 +366,18 @@ fn test_complex_cos() { fn test_complex_tan() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-0.000001,1.000001) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-0.000001,1.000001) mut result := c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(0.000187,0.999356) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(0.000187,0.999356) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.033813,-1.014794) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.033813,-1.014794) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -376,18 +385,18 @@ fn test_complex_tan() { fn test_complex_cot() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-0.000001,-0.999999) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-0.000001,-0.999999) mut result := c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(0.000188,-1.000644) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(0.000188,-1.000644) result = c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.032798,0.984329) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.032798,0.984329) result = c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -395,18 +404,18 @@ fn test_complex_cot() { fn test_complex_sec() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.000517,-0.001749) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.000517,-0.001749) mut result := c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.036253,-0.005164) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.036253,-0.005164) result = c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(0.151176,0.226974) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(0.151176,0.226974) result = c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -414,18 +423,18 @@ fn test_complex_sec() { fn test_complex_csc() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(-0.001749,-0.000517) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(-0.001749,-0.000517) mut result := c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.005174,0.036276) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.005174,0.036276) result = c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.228375,0.141363) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.228375,0.141363) result = c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -433,18 +442,18 @@ fn test_complex_csc() { fn test_complex_asin() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.617064,2.846289) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.617064,2.846289) mut result := c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.633984,2.305509) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.633984,2.305509) result = c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.427079,-1.528571) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.427079,-1.528571) result = c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -452,18 +461,18 @@ fn test_complex_asin() { fn test_complex_acos() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.953732,-2.846289) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.953732,-2.846289) mut result := c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(2.204780,-2.305509) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(2.204780,-2.305509) result = c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(1.997875,1.528571) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(1.997875,1.528571) result = c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -471,18 +480,18 @@ fn test_complex_acos() { fn test_complex_atan() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(1.502727,0.094441) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(1.502727,0.094441) mut result := c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-1.448307,0.158997) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-1.448307,0.158997) result = c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-1.338973,-0.402359) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-1.338973,-0.402359) result = c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -490,18 +499,18 @@ fn test_complex_atan() { fn test_complex_acot() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.068069,-0.094441) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.068069,-0.094441) mut result := c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.122489,-0.158997) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.122489,-0.158997) result = c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.231824,0.402359) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.231824,0.402359) result = c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -509,18 +518,18 @@ fn test_complex_acot() { fn test_complex_asec() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(1.503480,0.094668) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(1.503480,0.094668) mut result := c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(1.689547,0.160446) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(1.689547,0.160446) result = c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(1.757114,-0.396568) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(1.757114,-0.396568) result = c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -528,18 +537,18 @@ fn test_complex_asec() { fn test_complex_acsc() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.067317,-0.094668) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.067317,-0.094668) mut result := c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.118751,-0.160446) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.118751,-0.160446) result = c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.186318,0.396568) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.186318,0.396568) result = c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -547,18 +556,18 @@ fn test_complex_acsc() { fn test_complex_sinh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(55.941968,48.754942) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(55.941968,48.754942) mut result := c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(6.548120,-7.619232) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(6.548120,-7.619232) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(0.489056,-1.403119) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(0.489056,-1.403119) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -566,18 +575,18 @@ fn test_complex_sinh() { fn test_complex_cosh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(55.947047,48.750515) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(55.947047,48.750515) mut result := c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-6.580663,7.581553) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-6.580663,7.581553) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.642148,1.068607) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.642148,1.068607) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -585,18 +594,18 @@ fn test_complex_cosh() { fn test_complex_tanh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.999988,0.000090) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.999988,0.000090) mut result := c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-1.000710,0.004908) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-1.000710,0.004908) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-1.166736,0.243458) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-1.166736,0.243458) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -604,18 +613,18 @@ fn test_complex_tanh() { fn test_complex_coth() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(1.000012,-0.000090) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(1.000012,-0.000090) mut result := c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.999267,-0.004901) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.999267,-0.004901) result = c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.821330,-0.171384) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.821330,-0.171384) result = c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -623,18 +632,18 @@ fn test_complex_coth() { fn test_complex_sech() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.010160,-0.008853) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.010160,-0.008853) mut result := c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.065294,-0.075225) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.065294,-0.075225) result = c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.413149,-0.687527) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.413149,-0.687527) result = c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -642,18 +651,18 @@ fn test_complex_sech() { fn test_complex_csch() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.010159,-0.008854) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.010159,-0.008854) mut result := c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(0.064877,0.075490) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(0.064877,0.075490) result = c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(0.221501,0.635494) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(0.221501,0.635494) result = c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -661,18 +670,18 @@ fn test_complex_csch() { fn test_complex_asinh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(2.844098,0.947341) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(2.844098,0.947341) mut result := c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-2.299914,0.917617) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-2.299914,0.917617) result = c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-1.469352,-1.063440) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-1.469352,-1.063440) result = c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -680,18 +689,18 @@ fn test_complex_asinh() { fn test_complex_acosh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(2.846289,0.953732) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(2.846289,0.953732) mut result := c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(2.305509,2.204780) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(2.305509,2.204780) result = c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(1.528571,-1.997875) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(1.528571,-1.997875) result = c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -699,18 +708,18 @@ fn test_complex_acosh() { fn test_complex_atanh() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.067066,1.476056) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.067066,1.476056) mut result := c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.117501,1.409921) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.117501,1.409921) result = c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.173287,-1.178097) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.173287,-1.178097) result = c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -718,18 +727,18 @@ fn test_complex_atanh() { fn test_complex_acoth() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.067066,-0.094740) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.067066,-0.094740) mut result := c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.117501,-0.160875) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.117501,-0.160875) result = c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.173287,0.392699) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.173287,0.392699) result = c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -737,18 +746,18 @@ fn test_complex_acoth() { // fn test_complex_asech() { // // Tests were also verified on Wolfram Alpha -// mut c1 := cmath.complex(5,7) -// mut c2 := cmath.complex(0.094668,-1.503480) +// mut c1 := cmplx.complex(5,7) +// mut c2 := cmplx.complex(0.094668,-1.503480) // mut result := c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) -// c1 = cmath.complex(-3,4) -// c2 = cmath.complex(0.160446,-1.689547) +// c1 = cmplx.complex(-3,4) +// c2 = cmplx.complex(0.160446,-1.689547) // result = c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) -// c1 = cmath.complex(-1,-2) -// c2 = cmath.complex(0.396568,1.757114) +// c1 = cmplx.complex(-1,-2) +// c2 = cmplx.complex(0.396568,1.757114) // result = c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) @@ -756,18 +765,18 @@ fn test_complex_acoth() { fn test_complex_acsch() { // Tests were also verified on Wolfram Alpha - mut c1 := cmath.complex(5,7) - mut c2 := cmath.complex(0.067819,-0.094518) + mut c1 := cmplx.complex(5,7) + mut c2 := cmplx.complex(0.067819,-0.094518) mut result := c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-3,4) - c2 = cmath.complex(-0.121246,-0.159507) + c1 = cmplx.complex(-3,4) + c2 = cmplx.complex(-0.121246,-0.159507) result = c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = cmath.complex(-1,-2) - c2 = cmath.complex(-0.215612,0.401586) + c1 = cmplx.complex(-1,-2) + c2 = cmplx.complex(-0.215612,0.401586) result = c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str())