1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: extract platform specific wrapper functions to math.c.v and math.js.v

This commit is contained in:
Major Taylor 2020-05-07 01:47:24 -04:00 committed by GitHub
parent 2f52106253
commit 7d32476841
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 591 additions and 290 deletions

256
vlib/math/math.c.v Normal file
View File

@ -0,0 +1,256 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
#include <math.h>
fn C.acos(x f64) f64
fn C.asin(x f64) f64
fn C.atan(x f64) f64
fn C.atan2(y f64, x f64) f64
fn C.cbrt(x f64) f64
fn C.ceil(x f64) f64
fn C.cos(x f64) f64
fn C.cosf(x f32) f32
fn C.cosh(x f64) f64
fn C.erf(x f64) f64
fn C.erfc(x f64) f64
fn C.exp(x f64) f64
fn C.exp2(x f64) f64
fn C.fabs(x f64) f64
fn C.floor(x f64) f64
fn C.fmod(x f64, y f64) f64
fn C.hypot(x f64, y f64) f64
fn C.log(x f64) f64
fn C.log2(x f64) f64
fn C.log10(x f64) f64
fn C.lgamma(x f64) f64
fn C.pow(x f64, y f64) f64
fn C.powf(x f32, y f32) f32
fn C.round(x f64) f64
fn C.sin(x f64) f64
fn C.sinf(x f32) f32
fn C.sinh(x f64) f64
fn C.sqrt(x f64) f64
fn C.sqrtf(x f32) f32
fn C.tgamma(x f64) f64
fn C.tan(x f64) f64
fn C.tanf(x f32) f32
fn C.tanh(x f64) f64
fn C.trunc(x f64) f64
// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
return C.fabs(a)
}
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return C.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return C.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return C.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a, b f64) f64 {
return C.atan2(a, b)
}
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
}
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(a f64) f64 {
return C.ceil(a)
}
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return C.cos(a)
}
// cosf calculates cosine. (float32)
[inline]
pub fn cosf(a f32) f32 {
return C.cosf(a)
}
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// exp calculates exponent of the number (math.pow(math.E, a)).
[inline]
pub fn exp(a f64) f64 {
return C.exp(a)
}
// erf computes the error function value
[inline]
pub fn erf(a f64) f64 {
return C.erf(a)
}
// erfc computes the complementary error function value
[inline]
pub fn erfc(a f64) f64 {
return C.erfc(a)
}
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
[inline]
pub fn exp2(a f64) f64 {
return C.exp2(a)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(a f64) f64 {
return C.floor(a)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(a, b f64) f64 {
return C.fmod(a, b)
}
// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
return C.tgamma(a)
}
// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(a, b f64) f64 {
return C.hypot(a, b)
}
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(a f64) f64 {
return C.log(a)
}
// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(a f64) f64 {
return C.log2(a)
}
// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(a f64) f64 {
return C.log10(a)
}
// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(a f64) f64 {
return C.lgamma(a)
}
// log_n calculates base-N logarithm of the provided value.
[inline]
pub fn log_n(a, b f64) f64 {
return C.log(a) / C.log(b)
}
// pow returns base raised to the provided power.
[inline]
pub fn pow(a, b f64) f64 {
return C.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a, b f32) f32 {
return C.powf(a, b)
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(f f64) f64 {
return C.round(f)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return C.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return C.sinf(a)
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return C.sinh(a)
}
// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return C.sqrtf(a)
}
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return C.tan(a)
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return C.tanf(a)
}
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return C.tanh(a)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(a f64) f64 {
return C.trunc(a)
}

252
vlib/math/math.js.v Normal file
View File

@ -0,0 +1,252 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
// TODO : The commented out functions need either a native V implementation, a
// JS specific implementation, or use some other JS math library, such as
// https://github.com/josdejong/mathjs
fn JS.Math.abs(x f64) f64 // Replaces C.fabs
fn JS.Math.acos(x f64) f64
fn JS.Math.asin(x f64) f64
fn JS.Math.atan(x f64) f64
fn JS.Math.atan2(y f64, x f64) f64
fn JS.Math.cbrt(x f64) f64
fn JS.Math.ceil(x f64) f64
fn JS.Math.cos(x f64) f64
fn JS.Math.cosh(x f64) f64
//fn JS.Math.erf(x f64) f64 // Not in standard JS Math object
//fn JS.Math.erfc(x f64) f64 // Not in standard JS Math object
fn JS.Math.exp(x f64) f64
//fn JS.Math.exp2(x f64) f64 // Not in standard JS Math object
fn JS.Math.floor(x f64) f64
//fn JS.Math.fmod(x f64, y f64) f64 // Not in standard JS Math object
//fn JS.Math.hypot(x f64, y f64) f64 // Not in standard JS Math object
fn JS.Math.log(x f64) f64
//fn JS.Math.log2(x f64) f64 // Not in standard JS Math object
//fn JS.Math.log10(x f64) f64 // Not in standard JS Math object
//fn JS.Math.lgamma(x f64) f64 // Not in standard JS Math object
fn JS.Math.pow(x f64, y f64) f64
fn JS.Math.round(x f64) f64
fn JS.Math.sin(x f64) f64
fn JS.Math.sinh(x f64) f64
fn JS.Math.sqrt(x f64) f64
//fn JS.Math.tgamma(x f64) f64 // Not in standard JS Math object
fn JS.Math.tan(x f64) f64
fn JS.Math.tanh(x f64) f64
fn JS.Math.trunc(x f64) f64
// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
return JS.Math.abs(a)
}
// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
return JS.Math.acos(a)
}
// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
return JS.Math.asin(a)
}
// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
return JS.Math.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a, b f64) f64 {
return JS.Math.atan2(a, b)
}
// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
return JS.Math.cbrt(a)
}
// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(a f64) f64 {
return JS.Math.ceil(a)
}
// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
return JS.Math.cos(a)
}
// cosf calculates cosine. (float32). This doesn't exist in JS
[inline]
pub fn cosf(a f32) f32 {
return f32(JS.Math.cos(a))
}
// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
return JS.Math.cosh(a)
}
// exp calculates exponent of the number (math.pow(math.E, a)).
[inline]
pub fn exp(a f64) f64 {
return JS.Math.exp(a)
}
// erf computes the error function value
[inline]
pub fn erf(a f64) f64 {
return JS.Math.erf(a)
}
// erfc computes the complementary error function value
[inline]
pub fn erfc(a f64) f64 {
return JS.Math.erfc(a)
}
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
[inline]
pub fn exp2(a f64) f64 {
return JS.Math.exp2(a)
}
// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(a f64) f64 {
return JS.Math.floor(a)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(a, b f64) f64 {
return JS.Math.fmod(a, b)
}
// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
return JS.Math.tgamma(a)
}
// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(a, b f64) f64 {
return JS.Math.hypot(a, b)
}
// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(a f64) f64 {
return JS.Math.log(a)
}
// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(a f64) f64 {
return JS.Math.log2(a)
}
// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(a f64) f64 {
return JS.Math.log10(a)
}
// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(a f64) f64 {
return JS.Math.lgamma(a)
}
// log_n calculates base-N logarithm of the provided value.
[inline]
pub fn log_n(a, b f64) f64 {
return JS.Math.log(a) / JS.Math.log(b)
}
// pow returns base raised to the provided power.
[inline]
pub fn pow(a, b f64) f64 {
return JS.Math.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a, b f32) f32 {
return f32(JS.Math.pow(a, b))
}
// round returns the integer nearest to the provided value.
[inline]
pub fn round(f f64) f64 {
return JS.Math.round(f)
}
// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
return JS.Math.sin(a)
}
// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
return f32(JS.Math.sin(a))
}
// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
return JS.Math.sinh(a)
}
// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
return JS.Math.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
return f32(JS.Math.sqrt(a))
}
// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
return JS.Math.tan(a)
}
// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
return f32(JS.Math.tan(a))
}
// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
return JS.Math.tanh(a)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(a f64) f64 {
return JS.Math.trunc(a)
}

View File

@ -3,299 +3,15 @@
// that can be found in the LICENSE file.
module math
#include <math.h>
fn C.acos(x f64) f64
fn C.asin(x f64) f64
fn C.atan(x f64) f64
fn C.atan2(y f64, x f64) f64
fn C.cbrt(x f64) f64
fn C.ceil(x f64) f64
fn C.cos(x f64) f64
fn C.cosf(x f32) f32
fn C.cosh(x f64) f64
fn C.erf(x f64) f64
fn C.erfc(x f64) f64
fn C.exp(x f64) f64
fn C.exp2(x f64) f64
fn C.fabs(x f64) f64
fn C.floor(x f64) f64
fn C.fmod(x f64, y f64) f64
fn C.hypot(x f64, y f64) f64
fn C.log(x f64) f64
fn C.log2(x f64) f64
fn C.log10(x f64) f64
fn C.lgamma(x f64) f64
fn C.pow(x f64, y f64) f64
fn C.powf(x f32, y f32) f32
fn C.round(x f64) f64
fn C.sin(x f64) f64
fn C.sinf(x f32) f32
fn C.sinh(x f64) f64
fn C.sqrt(x f64) f64
fn C.sqrtf(x f32) f32
fn C.tgamma(x f64) f64
fn C.tan(x f64) f64
fn C.tanf(x f32) f32
fn C.tanh(x f64) f64
fn C.trunc(x f64) f64
// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// All functions are sorted alphabetically, separated by wrapped functions vs
// backend specific functions.
// If using System/Backend dependent functions, put them in their respective
// .c.v or .js.v or other files
// Returns the absolute value.
pub fn abs(a f64) f64 {
return C.fabs(a)
}
// acos calculates inverse cosine (arccosine).
pub fn acos(a f64) f64 {
return C.acos(a)
}
// asin calculates inverse sine (arcsine).
pub fn asin(a f64) f64 {
return C.asin(a)
}
// atan calculates inverse tangent (arctangent).
pub fn atan(a f64) f64 {
return C.atan(a)
}
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
pub fn atan2(a, b f64) f64 {
return C.atan2(a, b)
}
// cbrt calculates cubic root.
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
}
// ceil returns the nearest f64 greater or equal to the provided value.
pub fn ceil(a f64) f64 {
return C.ceil(a)
}
// cos calculates cosine.
pub fn cos(a f64) f64 {
return C.cos(a)
}
// cosf calculates cosine. (float32)
pub fn cosf(a f32) f32 {
return C.cosf(a)
}
// cosh calculates hyperbolic cosine.
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// degrees convert from degrees to radians.
pub fn degrees(radians f64) f64 {
return radians * (180.0 / pi)
}
// exp calculates exponent of the number (math.pow(math.E, a)).
pub fn exp(a f64) f64 {
return C.exp(a)
}
// digits returns an array of the digits of n in the given base.
pub fn digits(_n, base int) []int {
if base < 2 {
panic('digits: Cannot find digits of n with base $base')
}
mut n := _n
mut sign := 1
if n < 0 {
sign = -1
n = -n
}
mut res := []int{}
for n != 0 {
res << (n % base) * sign
n /= base
}
return res
}
// erf computes the error function value
pub fn erf(a f64) f64 {
return C.erf(a)
}
// erfc computes the complementary error function value
pub fn erfc(a f64) f64 {
return C.erfc(a)
}
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
pub fn exp2(a f64) f64 {
return C.exp2(a)
}
// floor returns the nearest f64 lower or equal of the provided value.
pub fn floor(a f64) f64 {
return C.floor(a)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
pub fn fmod(a, b f64) f64 {
return C.fmod(a, b)
}
// gamma computes the gamma function value
pub fn gamma(a f64) f64 {
return C.tgamma(a)
}
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a_, b_ i64) i64 {
mut a := a_
mut b := b_
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// Returns hypotenuse of a right triangle.
pub fn hypot(a, b f64) f64 {
return C.hypot(a, b)
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a, b i64) i64 {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}
// log calculates natural (base-e) logarithm of the provided value.
pub fn log(a f64) f64 {
return C.log(a)
}
// log2 calculates base-2 logarithm of the provided value.
pub fn log2(a f64) f64 {
return C.log2(a)
}
// log10 calculates the common (base-10) logarithm of the provided value.
pub fn log10(a f64) f64 {
return C.log10(a)
}
// log_gamma computes the log-gamma function value
pub fn log_gamma(a f64) f64 {
return C.lgamma(a)
}
// log_n calculates base-N logarithm of the provided value.
pub fn log_n(a, b f64) f64 {
return C.log(a) / C.log(b)
}
// max returns the maximum value of the two provided.
pub fn max(a, b f64) f64 {
if a > b {
return a
}
return b
}
// min returns the minimum value of the two provided.
pub fn min(a, b f64) f64 {
if a < b {
return a
}
return b
}
// pow returns base raised to the provided power.
pub fn pow(a, b f64) f64 {
return C.pow(a, b)
}
// powf returns base raised to the provided power. (float32)
pub fn powf(a, b f32) f32 {
return C.powf(a, b)
}
// radians convert from radians to degrees.
pub fn radians(degrees f64) f64 {
return degrees * (pi / 180.0)
}
// round returns the integer nearest to the provided value.
pub fn round(f f64) f64 {
return C.round(f)
}
// sin calculates sine.
pub fn sin(a f64) f64 {
return C.sin(a)
}
// sinf calculates sine. (float32)
pub fn sinf(a f32) f32 {
return C.sinf(a)
}
// sinh calculates hyperbolic sine.
pub fn sinh(a f64) f64 {
return C.sinh(a)
}
// sqrt calculates square-root of the provided value.
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// sqrtf calculates square-root of the provided value. (float32)
pub fn sqrtf(a f32) f32 {
return C.sqrtf(a)
}
// tan calculates tangent.
pub fn tan(a f64) f64 {
return C.tan(a)
}
// tanf calculates tangent. (float32)
pub fn tanf(a f32) f32 {
return C.tanf(a)
}
// tanh calculates hyperbolic tangent.
pub fn tanh(a f64) f64 {
return C.tanh(a)
}
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
pub fn trunc(a f64) f64 {
return C.trunc(a)
}
// Below are functions that are not wrappers for built-in system functions, but
// native V functions. They are still sorted alphabetically
// Faster approximate sin() and cos() implemented from lolremez
pub fn aprox_sin(a f64) f64 {
@ -327,3 +43,80 @@ pub fn aprox_cos(a f64) f64 {
pub fn copysign(x, y f64) f64 {
return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask))
}
// degrees convert from degrees to radians.
pub fn degrees(radians f64) f64 {
return radians * (180.0 / pi)
}
// digits returns an array of the digits of n in the given base.
pub fn digits(_n, base int) []int {
if base < 2 {
panic('digits: Cannot find digits of n with base $base')
}
mut n := _n
mut sign := 1
if n < 0 {
sign = -1
n = -n
}
mut res := []int{}
for n != 0 {
res << (n % base) * sign
n /= base
}
return res
}
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a_, b_ i64) i64 {
mut a := a_
mut b := b_
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a, b i64) i64 {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}
// max returns the maximum value of the two provided.
pub fn max(a, b f64) f64 {
if a > b {
return a
}
return b
}
// min returns the minimum value of the two provided.
pub fn min(a, b f64) f64 {
if a < b {
return a
}
return b
}
// radians convert from radians to degrees.
pub fn radians(degrees f64) f64 {
return degrees * (pi / 180.0)
}