1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: basic complex number support with tests

This commit is contained in:
archanpatkar 2019-07-06 23:49:09 +05:30 committed by Alexander Medvednikov
parent 758267254d
commit 818f8252f6
2 changed files with 197 additions and 0 deletions

93
vlib/math/complex.v Normal file
View File

@ -0,0 +1,93 @@
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math
struct Complex {
re f64
im f64
}
pub fn complex(re f64,im f64) Complex {
return Complex{re,im}
}
// To String method
pub fn (c Complex) str() string {
mut out := '$c.re'
out += if c.im >= 0 {
'+$c.im'
}
else {
'$c.im'
}
out += 'i'
return out
}
// Complex Addition c1 + c2
pub fn (c1 Complex) + (c2 Complex) Complex {
return Complex{c1.re+c2.re,c1.im+c2.im}
}
// Complex Substraction c1 - c2
pub fn (c1 Complex) - (c2 Complex) Complex {
return Complex{c1.re-c2.re,c1.im-c2.im}
}
// Complex Multiplication c1 * c2
// Currently Not Supported
// pub fn (c1 Complex) * (c2 Complex) Complex {
// return Complex{
// (c1.re * c2.re) + ((c1.im * c2.im) * -1),
// (c1.re * c2.im) + (c1.im * c2.re)
// }
// }
// Complex Division c1 / c2
// Currently Not Supported
// pub fn (c1 Complex) / (c2 Complex) Complex {
// denom := (c2.re * c2.re) + (c2.im * c2.im)
// return Complex {
// ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
// ((c1.re * -c2.im) + (c1.im * c2.re))/denom
// }
// }
// Complex Addition c1.add(c2)
pub fn (c1 Complex) add(c2 Complex) Complex {
return c1 + c2
}
// Complex Subtraction c1.subtract(c2)
pub fn (c1 Complex) subtract(c2 Complex) Complex {
return c1 - c2
}
// Complex Multiplication c1.multiply(c2)
pub fn (c1 Complex) multiply(c2 Complex) Complex {
return Complex{
(c1.re * c2.re) + ((c1.im * c2.im) * -1),
(c1.re * c2.im) + (c1.im * c2.re)
}
}
// Complex Division c1.divide(c2)
pub fn (c1 Complex) divide(c2 Complex) Complex {
denom := (c2.re * c2.re) + (c2.im * c2.im)
return Complex {
((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
((c1.re * -c2.im) + (c1.im * c2.re))/denom
}
}
// Complex Conjugate
pub fn (c1 Complex) conjugate() Complex{
return Complex{c1.re,-c1.im}
}
// Complex Equals
pub fn (c1 Complex) equals(c2 Complex) bool {
return (c1.re == c2.re) && (c1.im == c2.im)
}

104
vlib/math/complex_test.v Normal file
View File

@ -0,0 +1,104 @@
import math
// Tests are based on and verified from practice examples of Khan Academy
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
fn test_complex_addition() {
mut c1 := math.complex(0,-10)
mut c2 := math.complex(-40,8)
mut result := c1 + c2
assert result.equals(math.complex(-40,-2))
c1 = math.complex(-71,2)
c2 = math.complex(88,-12)
result = c1 + c2
assert result.equals(math.complex(17,-10))
c1 = math.complex(0,-30)
c2 = math.complex(52,-30)
result = c1 + c2
assert result.equals(math.complex(52,-60))
c1 = math.complex(12,-9)
c2 = math.complex(32,-6)
result = c1 + c2
assert result.equals(math.complex(44,-15))
}
fn test_complex_subtraction() {
mut c1 := math.complex(-8,0)
mut c2 := math.complex(6,30)
mut result := c1 - c2
assert result.equals(math.complex(-14,-30))
c1 = math.complex(-19,7)
c2 = math.complex(29,32)
result = c1 - c2
assert result.equals(math.complex(-48,-25))
c1 = math.complex(12,0)
c2 = math.complex(23,13)
result = c1 - c2
assert result.equals(math.complex(-11,-13))
c1 = math.complex(-14,3)
c2 = math.complex(0,14)
result = c1 - c2
assert result.equals(math.complex(-14,-11))
}
fn test_complex_multiplication() {
mut c1 := math.complex(1,2)
mut c2 := math.complex(1,-4)
mut result := c1.multiply(c2)
assert result.equals(math.complex(9,-2))
c1 = math.complex(-4,-4)
c2 = math.complex(-5,-3)
result = c1.multiply(c2)
assert result.equals(math.complex(8,32))
c1 = math.complex(4,4)
c2 = math.complex(-2,-5)
result = c1.multiply(c2)
assert result.equals(math.complex(12,-28))
c1 = math.complex(2,-2)
c2 = math.complex(4,-4)
result = c1.multiply(c2)
assert result.equals(math.complex(0,-16))
}
fn test_complex_division() {
mut c1 := math.complex(-9,-6)
mut c2 := math.complex(-3,-2)
mut result := c1.divide(c2)
assert result.equals(math.complex(3,0))
c1 = math.complex(-23,11)
c2 = math.complex(5,1)
result = c1.divide(c2)
assert result.equals(math.complex(-4,3))
c1 = math.complex(8,-2)
c2 = math.complex(-4,1)
result = c1.divide(c2)
assert result.equals(math.complex(-2,0))
c1 = math.complex(11,24)
c2 = math.complex(-4,-1)
result = c1.divide(c2)
assert result.equals(math.complex(-4,-5))
}
fn test_complex_conjugate() {
mut c1 := math.complex(0,8)
mut result := c1.conjugate()
assert result.equals(math.complex(0,-8))
c1 = math.complex(7,3)
result = c1.conjugate()
assert result.equals(math.complex(7,-3))
c1 = math.complex(2,2)
result = c1.conjugate()
assert result.equals(math.complex(2,-2))
c1 = math.complex(7,0)
result = c1.conjugate()
assert result.equals(math.complex(7,0))
}
fn test_complex_equals() {
mut c1 := math.complex(0,8)
mut c2 := math.complex(0,8)
assert c1.equals(c2)
c1 = math.complex(-3,19)
c2 = math.complex(-3,19)
assert c1.equals(c2)
}