mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
math: basic complex number support with tests
This commit is contained in:
parent
758267254d
commit
818f8252f6
93
vlib/math/complex.v
Normal file
93
vlib/math/complex.v
Normal file
@ -0,0 +1,93 @@
|
||||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
module math
|
||||
|
||||
struct Complex {
|
||||
re f64
|
||||
im f64
|
||||
}
|
||||
|
||||
pub fn complex(re f64,im f64) Complex {
|
||||
return Complex{re,im}
|
||||
}
|
||||
|
||||
// To String method
|
||||
pub fn (c Complex) str() string {
|
||||
mut out := '$c.re'
|
||||
out += if c.im >= 0 {
|
||||
'+$c.im'
|
||||
}
|
||||
else {
|
||||
'$c.im'
|
||||
}
|
||||
out += 'i'
|
||||
return out
|
||||
}
|
||||
|
||||
// Complex Addition c1 + c2
|
||||
pub fn (c1 Complex) + (c2 Complex) Complex {
|
||||
return Complex{c1.re+c2.re,c1.im+c2.im}
|
||||
}
|
||||
|
||||
// Complex Substraction c1 - c2
|
||||
pub fn (c1 Complex) - (c2 Complex) Complex {
|
||||
return Complex{c1.re-c2.re,c1.im-c2.im}
|
||||
}
|
||||
|
||||
// Complex Multiplication c1 * c2
|
||||
// Currently Not Supported
|
||||
// pub fn (c1 Complex) * (c2 Complex) Complex {
|
||||
// return Complex{
|
||||
// (c1.re * c2.re) + ((c1.im * c2.im) * -1),
|
||||
// (c1.re * c2.im) + (c1.im * c2.re)
|
||||
// }
|
||||
// }
|
||||
|
||||
// Complex Division c1 / c2
|
||||
// Currently Not Supported
|
||||
// pub fn (c1 Complex) / (c2 Complex) Complex {
|
||||
// denom := (c2.re * c2.re) + (c2.im * c2.im)
|
||||
// return Complex {
|
||||
// ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
|
||||
// ((c1.re * -c2.im) + (c1.im * c2.re))/denom
|
||||
// }
|
||||
// }
|
||||
|
||||
// Complex Addition c1.add(c2)
|
||||
pub fn (c1 Complex) add(c2 Complex) Complex {
|
||||
return c1 + c2
|
||||
}
|
||||
|
||||
// Complex Subtraction c1.subtract(c2)
|
||||
pub fn (c1 Complex) subtract(c2 Complex) Complex {
|
||||
return c1 - c2
|
||||
}
|
||||
|
||||
// Complex Multiplication c1.multiply(c2)
|
||||
pub fn (c1 Complex) multiply(c2 Complex) Complex {
|
||||
return Complex{
|
||||
(c1.re * c2.re) + ((c1.im * c2.im) * -1),
|
||||
(c1.re * c2.im) + (c1.im * c2.re)
|
||||
}
|
||||
}
|
||||
|
||||
// Complex Division c1.divide(c2)
|
||||
pub fn (c1 Complex) divide(c2 Complex) Complex {
|
||||
denom := (c2.re * c2.re) + (c2.im * c2.im)
|
||||
return Complex {
|
||||
((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
|
||||
((c1.re * -c2.im) + (c1.im * c2.re))/denom
|
||||
}
|
||||
}
|
||||
|
||||
// Complex Conjugate
|
||||
pub fn (c1 Complex) conjugate() Complex{
|
||||
return Complex{c1.re,-c1.im}
|
||||
}
|
||||
|
||||
// Complex Equals
|
||||
pub fn (c1 Complex) equals(c2 Complex) bool {
|
||||
return (c1.re == c2.re) && (c1.im == c2.im)
|
||||
}
|
104
vlib/math/complex_test.v
Normal file
104
vlib/math/complex_test.v
Normal file
@ -0,0 +1,104 @@
|
||||
import math
|
||||
|
||||
// Tests are based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
|
||||
fn test_complex_addition() {
|
||||
mut c1 := math.complex(0,-10)
|
||||
mut c2 := math.complex(-40,8)
|
||||
mut result := c1 + c2
|
||||
assert result.equals(math.complex(-40,-2))
|
||||
c1 = math.complex(-71,2)
|
||||
c2 = math.complex(88,-12)
|
||||
result = c1 + c2
|
||||
assert result.equals(math.complex(17,-10))
|
||||
c1 = math.complex(0,-30)
|
||||
c2 = math.complex(52,-30)
|
||||
result = c1 + c2
|
||||
assert result.equals(math.complex(52,-60))
|
||||
c1 = math.complex(12,-9)
|
||||
c2 = math.complex(32,-6)
|
||||
result = c1 + c2
|
||||
assert result.equals(math.complex(44,-15))
|
||||
}
|
||||
|
||||
fn test_complex_subtraction() {
|
||||
mut c1 := math.complex(-8,0)
|
||||
mut c2 := math.complex(6,30)
|
||||
mut result := c1 - c2
|
||||
assert result.equals(math.complex(-14,-30))
|
||||
c1 = math.complex(-19,7)
|
||||
c2 = math.complex(29,32)
|
||||
result = c1 - c2
|
||||
assert result.equals(math.complex(-48,-25))
|
||||
c1 = math.complex(12,0)
|
||||
c2 = math.complex(23,13)
|
||||
result = c1 - c2
|
||||
assert result.equals(math.complex(-11,-13))
|
||||
c1 = math.complex(-14,3)
|
||||
c2 = math.complex(0,14)
|
||||
result = c1 - c2
|
||||
assert result.equals(math.complex(-14,-11))
|
||||
}
|
||||
|
||||
fn test_complex_multiplication() {
|
||||
mut c1 := math.complex(1,2)
|
||||
mut c2 := math.complex(1,-4)
|
||||
mut result := c1.multiply(c2)
|
||||
assert result.equals(math.complex(9,-2))
|
||||
c1 = math.complex(-4,-4)
|
||||
c2 = math.complex(-5,-3)
|
||||
result = c1.multiply(c2)
|
||||
assert result.equals(math.complex(8,32))
|
||||
c1 = math.complex(4,4)
|
||||
c2 = math.complex(-2,-5)
|
||||
result = c1.multiply(c2)
|
||||
assert result.equals(math.complex(12,-28))
|
||||
c1 = math.complex(2,-2)
|
||||
c2 = math.complex(4,-4)
|
||||
result = c1.multiply(c2)
|
||||
assert result.equals(math.complex(0,-16))
|
||||
}
|
||||
|
||||
fn test_complex_division() {
|
||||
mut c1 := math.complex(-9,-6)
|
||||
mut c2 := math.complex(-3,-2)
|
||||
mut result := c1.divide(c2)
|
||||
assert result.equals(math.complex(3,0))
|
||||
c1 = math.complex(-23,11)
|
||||
c2 = math.complex(5,1)
|
||||
result = c1.divide(c2)
|
||||
assert result.equals(math.complex(-4,3))
|
||||
c1 = math.complex(8,-2)
|
||||
c2 = math.complex(-4,1)
|
||||
result = c1.divide(c2)
|
||||
assert result.equals(math.complex(-2,0))
|
||||
c1 = math.complex(11,24)
|
||||
c2 = math.complex(-4,-1)
|
||||
result = c1.divide(c2)
|
||||
assert result.equals(math.complex(-4,-5))
|
||||
}
|
||||
|
||||
fn test_complex_conjugate() {
|
||||
mut c1 := math.complex(0,8)
|
||||
mut result := c1.conjugate()
|
||||
assert result.equals(math.complex(0,-8))
|
||||
c1 = math.complex(7,3)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(math.complex(7,-3))
|
||||
c1 = math.complex(2,2)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(math.complex(2,-2))
|
||||
c1 = math.complex(7,0)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(math.complex(7,0))
|
||||
}
|
||||
|
||||
fn test_complex_equals() {
|
||||
mut c1 := math.complex(0,8)
|
||||
mut c2 := math.complex(0,8)
|
||||
assert c1.equals(c2)
|
||||
c1 = math.complex(-3,19)
|
||||
c2 = math.complex(-3,19)
|
||||
assert c1.equals(c2)
|
||||
}
|
Loading…
Reference in New Issue
Block a user