mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
tools: make v test-cleancode
test everything by default (#10050)
This commit is contained in:
@@ -11,124 +11,124 @@ fn tst_res(str1 string, str2 string) bool {
|
||||
fn test_complex_addition() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c1 := cmplx.complex(0,-10)
|
||||
mut c2 := cmplx.complex(-40,8)
|
||||
mut c1 := cmplx.complex(0, -10)
|
||||
mut c2 := cmplx.complex(-40, 8)
|
||||
mut result := c1 + c2
|
||||
assert result.equals(cmplx.complex(-40,-2))
|
||||
c1 = cmplx.complex(-71,2)
|
||||
c2 = cmplx.complex(88,-12)
|
||||
assert result.equals(cmplx.complex(-40, -2))
|
||||
c1 = cmplx.complex(-71, 2)
|
||||
c2 = cmplx.complex(88, -12)
|
||||
result = c1 + c2
|
||||
assert result.equals(cmplx.complex(17,-10))
|
||||
c1 = cmplx.complex(0,-30)
|
||||
c2 = cmplx.complex(52,-30)
|
||||
assert result.equals(cmplx.complex(17, -10))
|
||||
c1 = cmplx.complex(0, -30)
|
||||
c2 = cmplx.complex(52, -30)
|
||||
result = c1 + c2
|
||||
assert result.equals(cmplx.complex(52,-60))
|
||||
c1 = cmplx.complex(12,-9)
|
||||
c2 = cmplx.complex(32,-6)
|
||||
assert result.equals(cmplx.complex(52, -60))
|
||||
c1 = cmplx.complex(12, -9)
|
||||
c2 = cmplx.complex(32, -6)
|
||||
result = c1 + c2
|
||||
assert result.equals(cmplx.complex(44,-15))
|
||||
assert result.equals(cmplx.complex(44, -15))
|
||||
}
|
||||
|
||||
fn test_complex_subtraction() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c1 := cmplx.complex(-8,0)
|
||||
mut c2 := cmplx.complex(6,30)
|
||||
mut c1 := cmplx.complex(-8, 0)
|
||||
mut c2 := cmplx.complex(6, 30)
|
||||
mut result := c1 - c2
|
||||
assert result.equals(cmplx.complex(-14,-30))
|
||||
c1 = cmplx.complex(-19,7)
|
||||
c2 = cmplx.complex(29,32)
|
||||
assert result.equals(cmplx.complex(-14, -30))
|
||||
c1 = cmplx.complex(-19, 7)
|
||||
c2 = cmplx.complex(29, 32)
|
||||
result = c1 - c2
|
||||
assert result.equals(cmplx.complex(-48,-25))
|
||||
c1 = cmplx.complex(12,0)
|
||||
c2 = cmplx.complex(23,13)
|
||||
assert result.equals(cmplx.complex(-48, -25))
|
||||
c1 = cmplx.complex(12, 0)
|
||||
c2 = cmplx.complex(23, 13)
|
||||
result = c1 - c2
|
||||
assert result.equals(cmplx.complex(-11,-13))
|
||||
c1 = cmplx.complex(-14,3)
|
||||
c2 = cmplx.complex(0,14)
|
||||
assert result.equals(cmplx.complex(-11, -13))
|
||||
c1 = cmplx.complex(-14, 3)
|
||||
c2 = cmplx.complex(0, 14)
|
||||
result = c1 - c2
|
||||
assert result.equals(cmplx.complex(-14,-11))
|
||||
assert result.equals(cmplx.complex(-14, -11))
|
||||
}
|
||||
|
||||
fn test_complex_multiplication() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c1 := cmplx.complex(1,2)
|
||||
mut c2 := cmplx.complex(1,-4)
|
||||
mut c1 := cmplx.complex(1, 2)
|
||||
mut c2 := cmplx.complex(1, -4)
|
||||
mut result := c1 * c2
|
||||
assert result.equals(cmplx.complex(9,-2))
|
||||
c1 = cmplx.complex(-4,-4)
|
||||
c2 = cmplx.complex(-5,-3)
|
||||
assert result.equals(cmplx.complex(9, -2))
|
||||
c1 = cmplx.complex(-4, -4)
|
||||
c2 = cmplx.complex(-5, -3)
|
||||
result = c1 * c2
|
||||
assert result.equals(cmplx.complex(8,32))
|
||||
c1 = cmplx.complex(4,4)
|
||||
c2 = cmplx.complex(-2,-5)
|
||||
assert result.equals(cmplx.complex(8, 32))
|
||||
c1 = cmplx.complex(4, 4)
|
||||
c2 = cmplx.complex(-2, -5)
|
||||
result = c1 * c2
|
||||
assert result.equals(cmplx.complex(12,-28))
|
||||
c1 = cmplx.complex(2,-2)
|
||||
c2 = cmplx.complex(4,-4)
|
||||
assert result.equals(cmplx.complex(12, -28))
|
||||
c1 = cmplx.complex(2, -2)
|
||||
c2 = cmplx.complex(4, -4)
|
||||
result = c1 * c2
|
||||
assert result.equals(cmplx.complex(0,-16))
|
||||
assert result.equals(cmplx.complex(0, -16))
|
||||
}
|
||||
|
||||
fn test_complex_division() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c1 := cmplx.complex(-9,-6)
|
||||
mut c2 := cmplx.complex(-3,-2)
|
||||
mut c1 := cmplx.complex(-9, -6)
|
||||
mut c2 := cmplx.complex(-3, -2)
|
||||
mut result := c1 / c2
|
||||
assert result.equals(cmplx.complex(3,0))
|
||||
c1 = cmplx.complex(-23,11)
|
||||
c2 = cmplx.complex(5,1)
|
||||
assert result.equals(cmplx.complex(3, 0))
|
||||
c1 = cmplx.complex(-23, 11)
|
||||
c2 = cmplx.complex(5, 1)
|
||||
result = c1 / c2
|
||||
assert result.equals(cmplx.complex(-4,3))
|
||||
c1 = cmplx.complex(8,-2)
|
||||
c2 = cmplx.complex(-4,1)
|
||||
assert result.equals(cmplx.complex(-4, 3))
|
||||
c1 = cmplx.complex(8, -2)
|
||||
c2 = cmplx.complex(-4, 1)
|
||||
result = c1 / c2
|
||||
assert result.equals(cmplx.complex(-2,0))
|
||||
c1 = cmplx.complex(11,24)
|
||||
c2 = cmplx.complex(-4,-1)
|
||||
assert result.equals(cmplx.complex(-2, 0))
|
||||
c1 = cmplx.complex(11, 24)
|
||||
c2 = cmplx.complex(-4, -1)
|
||||
result = c1 / c2
|
||||
assert result.equals(cmplx.complex(-4,-5))
|
||||
assert result.equals(cmplx.complex(-4, -5))
|
||||
}
|
||||
|
||||
fn test_complex_conjugate() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c1 := cmplx.complex(0,8)
|
||||
mut c1 := cmplx.complex(0, 8)
|
||||
mut result := c1.conjugate()
|
||||
assert result.equals(cmplx.complex(0,-8))
|
||||
c1 = cmplx.complex(7,3)
|
||||
assert result.equals(cmplx.complex(0, -8))
|
||||
c1 = cmplx.complex(7, 3)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(cmplx.complex(7,-3))
|
||||
c1 = cmplx.complex(2,2)
|
||||
assert result.equals(cmplx.complex(7, -3))
|
||||
c1 = cmplx.complex(2, 2)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(cmplx.complex(2,-2))
|
||||
c1 = cmplx.complex(7,0)
|
||||
assert result.equals(cmplx.complex(2, -2))
|
||||
c1 = cmplx.complex(7, 0)
|
||||
result = c1.conjugate()
|
||||
assert result.equals(cmplx.complex(7,0))
|
||||
assert result.equals(cmplx.complex(7, 0))
|
||||
}
|
||||
|
||||
fn test_complex_equals() {
|
||||
mut c1 := cmplx.complex(0,8)
|
||||
mut c2 := cmplx.complex(0,8)
|
||||
mut c1 := cmplx.complex(0, 8)
|
||||
mut c2 := cmplx.complex(0, 8)
|
||||
assert c1.equals(c2)
|
||||
c1 = cmplx.complex(-3,19)
|
||||
c2 = cmplx.complex(-3,19)
|
||||
c1 = cmplx.complex(-3, 19)
|
||||
c2 = cmplx.complex(-3, 19)
|
||||
assert c1.equals(c2)
|
||||
}
|
||||
|
||||
fn test_complex_abs() {
|
||||
mut c1 := cmplx.complex(3,4)
|
||||
mut c1 := cmplx.complex(3, 4)
|
||||
assert c1.abs() == 5
|
||||
c1 = cmplx.complex(1,2)
|
||||
c1 = cmplx.complex(1, 2)
|
||||
assert c1.abs() == math.sqrt(5)
|
||||
assert c1.abs() == c1.conjugate().abs()
|
||||
c1 = cmplx.complex(7,0)
|
||||
c1 = cmplx.complex(7, 0)
|
||||
assert c1.abs() == 7
|
||||
}
|
||||
|
||||
fn test_complex_angle(){
|
||||
fn test_complex_angle() {
|
||||
// Test is based on and verified from practice examples of Khan Academy
|
||||
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers
|
||||
mut c := cmplx.complex(1, 0)
|
||||
@@ -145,52 +145,51 @@ fn test_complex_angle(){
|
||||
assert cc.angle() + c.angle() == 0
|
||||
}
|
||||
|
||||
|
||||
fn test_complex_addinv() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-5,-7)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-5, -7)
|
||||
mut result := c1.addinv()
|
||||
assert result.equals(c2)
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(3,-4)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(3, -4)
|
||||
result = c1.addinv()
|
||||
assert result.equals(c2)
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(1,2)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(1, 2)
|
||||
result = c1.addinv()
|
||||
assert result.equals(c2)
|
||||
}
|
||||
|
||||
fn test_complex_mulinv() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.067568,-0.094595)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.067568, -0.094595)
|
||||
mut result := c1.mulinv()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
println(c2.str())
|
||||
println(result.str())
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.12,-0.16)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.12, -0.16)
|
||||
result = c1.mulinv()
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.2,0.4)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.2, 0.4)
|
||||
result = c1.mulinv()
|
||||
assert result.equals(c2)
|
||||
}
|
||||
|
||||
fn test_complex_mod() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut result := c1.mod()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert tst_res(result.str(), '8.602325')
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
result = c1.mod()
|
||||
assert result == 5
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
result = c1.mod()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert tst_res(result.str(), '2.236068')
|
||||
@@ -198,18 +197,18 @@ fn test_complex_mod() {
|
||||
|
||||
fn test_complex_pow() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-24.0,70.0)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-24.0, 70.0)
|
||||
mut result := c1.pow(2)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(117,44)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(117, 44)
|
||||
result = c1.pow(3)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-7,-24)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-7, -24)
|
||||
result = c1.pow(4)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -217,18 +216,18 @@ fn test_complex_pow() {
|
||||
|
||||
fn test_complex_root() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(2.607904,1.342074)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(2.607904, 1.342074)
|
||||
mut result := c1.root(2)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(1.264953,1.150614)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(1.264953, 1.150614)
|
||||
result = c1.root(3)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(1.068059,-0.595482)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(1.068059, -0.595482)
|
||||
result = c1.root(4)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -236,18 +235,18 @@ fn test_complex_root() {
|
||||
|
||||
fn test_complex_exp() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(111.889015,97.505457)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(111.889015, 97.505457)
|
||||
mut result := c1.exp()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.032543,-0.037679)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.032543, -0.037679)
|
||||
result = c1.exp()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.153092,-0.334512)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.153092, -0.334512)
|
||||
result = c1.exp()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -255,18 +254,18 @@ fn test_complex_exp() {
|
||||
|
||||
fn test_complex_ln() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(2.152033,0.950547)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(2.152033, 0.950547)
|
||||
mut result := c1.ln()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(1.609438,2.214297)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(1.609438, 2.214297)
|
||||
result = c1.ln()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.804719,-2.034444)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(0.804719, -2.034444)
|
||||
result = c1.ln()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -274,18 +273,18 @@ fn test_complex_ln() {
|
||||
|
||||
fn test_complex_arg() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(2.152033,0.950547)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(2.152033, 0.950547)
|
||||
mut result := c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert tst_res(result.str(), '0.950547')
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(1.609438,2.214297)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(1.609438, 2.214297)
|
||||
result = c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert tst_res(result.str(), '2.214297')
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.804719,-2.034444)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(0.804719, -2.034444)
|
||||
result = c1.arg()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert tst_res(result.str(), '-2.034444')
|
||||
@@ -293,21 +292,21 @@ fn test_complex_arg() {
|
||||
|
||||
fn test_complex_log() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut b1 := cmplx.complex(-6,-2)
|
||||
mut c2 := cmplx.complex(0.232873,-1.413175)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut b1 := cmplx.complex(-6, -2)
|
||||
mut c2 := cmplx.complex(0.232873, -1.413175)
|
||||
mut result := c1.log(b1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
b1 = cmplx.complex(3,-1)
|
||||
c2 = cmplx.complex(0.152198,-0.409312)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
b1 = cmplx.complex(3, -1)
|
||||
c2 = cmplx.complex(0.152198, -0.409312)
|
||||
result = c1.log(b1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
b1 = cmplx.complex(0,9)
|
||||
c2 = cmplx.complex(-0.298243,1.197981)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
b1 = cmplx.complex(0, 9)
|
||||
c2 = cmplx.complex(-0.298243, 1.197981)
|
||||
result = c1.log(b1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -315,21 +314,21 @@ fn test_complex_log() {
|
||||
|
||||
fn test_complex_cpow() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut r1 := cmplx.complex(2,2)
|
||||
mut c2 := cmplx.complex(11.022341,-0.861785)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut r1 := cmplx.complex(2, 2)
|
||||
mut c2 := cmplx.complex(11.022341, -0.861785)
|
||||
mut result := c1.cpow(r1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
r1 = cmplx.complex(-4,-2)
|
||||
c2 = cmplx.complex(0.118303,0.063148)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
r1 = cmplx.complex(-4, -2)
|
||||
c2 = cmplx.complex(0.118303, 0.063148)
|
||||
result = c1.cpow(r1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
r1 = cmplx.complex(8,-9)
|
||||
c2 = cmplx.complex(-0.000000,0.000007)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
r1 = cmplx.complex(8, -9)
|
||||
c2 = cmplx.complex(-0.000000, 0.000007)
|
||||
result = c1.cpow(r1)
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -337,18 +336,18 @@ fn test_complex_cpow() {
|
||||
|
||||
fn test_complex_sin() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-525.794515,155.536550)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-525.794515, 155.536550)
|
||||
mut result := c1.sin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-3.853738,-27.016813)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-3.853738, -27.016813)
|
||||
result = c1.sin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-3.165779,-1.959601)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-3.165779, -1.959601)
|
||||
result = c1.sin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -356,18 +355,18 @@ fn test_complex_sin() {
|
||||
|
||||
fn test_complex_cos() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(155.536809,525.793641)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(155.536809, 525.793641)
|
||||
mut result := c1.cos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-27.034946,3.851153)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-27.034946, 3.851153)
|
||||
result = c1.cos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(2.032723,-3.051898)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(2.032723, -3.051898)
|
||||
result = c1.cos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -375,18 +374,18 @@ fn test_complex_cos() {
|
||||
|
||||
fn test_complex_tan() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-0.000001,1.000001)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-0.000001, 1.000001)
|
||||
mut result := c1.tan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(0.000187,0.999356)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(0.000187, 0.999356)
|
||||
result = c1.tan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.033813,-1.014794)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.033813, -1.014794)
|
||||
result = c1.tan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -394,18 +393,18 @@ fn test_complex_tan() {
|
||||
|
||||
fn test_complex_cot() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-0.000001,-0.999999)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-0.000001, -0.999999)
|
||||
mut result := c1.cot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(0.000188,-1.000644)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(0.000188, -1.000644)
|
||||
result = c1.cot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.032798,0.984329)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.032798, 0.984329)
|
||||
result = c1.cot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -413,18 +412,18 @@ fn test_complex_cot() {
|
||||
|
||||
fn test_complex_sec() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.000517,-0.001749)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.000517, -0.001749)
|
||||
mut result := c1.sec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.036253,-0.005164)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.036253, -0.005164)
|
||||
result = c1.sec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.151176,0.226974)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(0.151176, 0.226974)
|
||||
result = c1.sec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -432,18 +431,18 @@ fn test_complex_sec() {
|
||||
|
||||
fn test_complex_csc() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(-0.001749,-0.000517)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(-0.001749, -0.000517)
|
||||
mut result := c1.csc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.005174,0.036276)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.005174, 0.036276)
|
||||
result = c1.csc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.228375,0.141363)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.228375, 0.141363)
|
||||
result = c1.csc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -451,18 +450,18 @@ fn test_complex_csc() {
|
||||
|
||||
fn test_complex_asin() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.617064,2.846289)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.617064, 2.846289)
|
||||
mut result := c1.asin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.633984,2.305509)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.633984, 2.305509)
|
||||
result = c1.asin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.427079,-1.528571)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.427079, -1.528571)
|
||||
result = c1.asin()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -470,18 +469,18 @@ fn test_complex_asin() {
|
||||
|
||||
fn test_complex_acos() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.953732,-2.846289)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.953732, -2.846289)
|
||||
mut result := c1.acos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(2.204780,-2.305509)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(2.204780, -2.305509)
|
||||
result = c1.acos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(1.997875,1.528571)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(1.997875, 1.528571)
|
||||
result = c1.acos()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -489,18 +488,18 @@ fn test_complex_acos() {
|
||||
|
||||
fn test_complex_atan() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(1.502727,0.094441)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(1.502727, 0.094441)
|
||||
mut result := c1.atan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-1.448307,0.158997)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-1.448307, 0.158997)
|
||||
result = c1.atan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-1.338973,-0.402359)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-1.338973, -0.402359)
|
||||
result = c1.atan()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -508,18 +507,18 @@ fn test_complex_atan() {
|
||||
|
||||
fn test_complex_acot() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.068069,-0.094441)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.068069, -0.094441)
|
||||
mut result := c1.acot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.122489,-0.158997)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.122489, -0.158997)
|
||||
result = c1.acot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.231824,0.402359)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.231824, 0.402359)
|
||||
result = c1.acot()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -527,18 +526,18 @@ fn test_complex_acot() {
|
||||
|
||||
fn test_complex_asec() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(1.503480,0.094668)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(1.503480, 0.094668)
|
||||
mut result := c1.asec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(1.689547,0.160446)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(1.689547, 0.160446)
|
||||
result = c1.asec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(1.757114,-0.396568)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(1.757114, -0.396568)
|
||||
result = c1.asec()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -546,18 +545,18 @@ fn test_complex_asec() {
|
||||
|
||||
fn test_complex_acsc() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.067317,-0.094668)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.067317, -0.094668)
|
||||
mut result := c1.acsc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.118751,-0.160446)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.118751, -0.160446)
|
||||
result = c1.acsc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.186318,0.396568)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.186318, 0.396568)
|
||||
result = c1.acsc()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -565,18 +564,18 @@ fn test_complex_acsc() {
|
||||
|
||||
fn test_complex_sinh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(55.941968,48.754942)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(55.941968, 48.754942)
|
||||
mut result := c1.sinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(6.548120,-7.619232)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(6.548120, -7.619232)
|
||||
result = c1.sinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.489056,-1.403119)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(0.489056, -1.403119)
|
||||
result = c1.sinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -584,18 +583,18 @@ fn test_complex_sinh() {
|
||||
|
||||
fn test_complex_cosh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(55.947047,48.750515)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(55.947047, 48.750515)
|
||||
mut result := c1.cosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-6.580663,7.581553)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-6.580663, 7.581553)
|
||||
result = c1.cosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.642148,1.068607)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.642148, 1.068607)
|
||||
result = c1.cosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -603,18 +602,18 @@ fn test_complex_cosh() {
|
||||
|
||||
fn test_complex_tanh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.999988,0.000090)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.999988, 0.000090)
|
||||
mut result := c1.tanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-1.000710,0.004908)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-1.000710, 0.004908)
|
||||
result = c1.tanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-1.166736,0.243458)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-1.166736, 0.243458)
|
||||
result = c1.tanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -622,18 +621,18 @@ fn test_complex_tanh() {
|
||||
|
||||
fn test_complex_coth() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(1.000012,-0.000090)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(1.000012, -0.000090)
|
||||
mut result := c1.coth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.999267,-0.004901)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.999267, -0.004901)
|
||||
result = c1.coth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.821330,-0.171384)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.821330, -0.171384)
|
||||
result = c1.coth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -641,18 +640,18 @@ fn test_complex_coth() {
|
||||
|
||||
fn test_complex_sech() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.010160,-0.008853)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.010160, -0.008853)
|
||||
mut result := c1.sech()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.065294,-0.075225)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.065294, -0.075225)
|
||||
result = c1.sech()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.413149,-0.687527)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.413149, -0.687527)
|
||||
result = c1.sech()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -660,18 +659,18 @@ fn test_complex_sech() {
|
||||
|
||||
fn test_complex_csch() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.010159,-0.008854)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.010159, -0.008854)
|
||||
mut result := c1.csch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(0.064877,0.075490)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(0.064877, 0.075490)
|
||||
result = c1.csch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(0.221501,0.635494)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(0.221501, 0.635494)
|
||||
result = c1.csch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -679,18 +678,18 @@ fn test_complex_csch() {
|
||||
|
||||
fn test_complex_asinh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(2.844098,0.947341)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(2.844098, 0.947341)
|
||||
mut result := c1.asinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-2.299914,0.917617)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-2.299914, 0.917617)
|
||||
result = c1.asinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-1.469352,-1.063440)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-1.469352, -1.063440)
|
||||
result = c1.asinh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -698,18 +697,18 @@ fn test_complex_asinh() {
|
||||
|
||||
fn test_complex_acosh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(2.846289,0.953732)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(2.846289, 0.953732)
|
||||
mut result := c1.acosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(2.305509,2.204780)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(2.305509, 2.204780)
|
||||
result = c1.acosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(1.528571,-1.997875)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(1.528571, -1.997875)
|
||||
result = c1.acosh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -717,18 +716,18 @@ fn test_complex_acosh() {
|
||||
|
||||
fn test_complex_atanh() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.067066,1.476056)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.067066, 1.476056)
|
||||
mut result := c1.atanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.117501,1.409921)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.117501, 1.409921)
|
||||
result = c1.atanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.173287,-1.178097)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.173287, -1.178097)
|
||||
result = c1.atanh()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -736,18 +735,18 @@ fn test_complex_atanh() {
|
||||
|
||||
fn test_complex_acoth() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.067066,-0.094740)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.067066, -0.094740)
|
||||
mut result := c1.acoth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.117501,-0.160875)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.117501, -0.160875)
|
||||
result = c1.acoth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.173287,0.392699)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.173287, 0.392699)
|
||||
result = c1.acoth()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
@@ -774,18 +773,18 @@ fn test_complex_acoth() {
|
||||
|
||||
fn test_complex_acsch() {
|
||||
// Tests were also verified on Wolfram Alpha
|
||||
mut c1 := cmplx.complex(5,7)
|
||||
mut c2 := cmplx.complex(0.067819,-0.094518)
|
||||
mut c1 := cmplx.complex(5, 7)
|
||||
mut c2 := cmplx.complex(0.067819, -0.094518)
|
||||
mut result := c1.acsch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-3,4)
|
||||
c2 = cmplx.complex(-0.121246,-0.159507)
|
||||
c1 = cmplx.complex(-3, 4)
|
||||
c2 = cmplx.complex(-0.121246, -0.159507)
|
||||
result = c1.acsch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
c1 = cmplx.complex(-1,-2)
|
||||
c2 = cmplx.complex(-0.215612,0.401586)
|
||||
c1 = cmplx.complex(-1, -2)
|
||||
c2 = cmplx.complex(-0.215612, 0.401586)
|
||||
result = c1.acsch()
|
||||
// Some issue with precision comparison in f64 using == operator hence serializing to string
|
||||
assert result.str().eq(c2.str())
|
||||
|
Reference in New Issue
Block a user